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Abstract. This paper proposes a nonparametric Bayesian model for
constructing a trimmed prototype representation of handwritten digit
images. We assume that all images are resized to the same size. At each
pixel point, we count the number of occurrences of grayscaled colors
over multiple images. Then we obtain a color histogram at each pixel
location. When we conduct this counting over images of the same cate-
gory, e.g. images of handwritten digit “5”, the obtained set of histograms
can be regarded as a prototype of the category. After normalizing each
histogram to a probability distribution over colors, we can calculate a
likelihood of an unknown image by multiplying the probability of the
color appearing at each pixel. We regard this method as the baseline and
compare it with a method using a probabilistic model called Multino-
mialized Subset Infinite Relational Model (MSIRM), which constructs
a prototype by clustering pixel columns and rows. While MSIRM can
determine the number of clusters flexibly based on Chinese restaurant
process, its interesting feature is that it can detect columns and rows
irrelevant for constructing a prototype. In the experiment, we compared
our method with the baseline and also with a histogram clustering by
Dirichlet process mixture of multinomial. It was revealed that MSIRM
could detect irrelevant columns and rows accurately at peripheral part
of handwritten digit images. This means that MSIRM could provide
trimmed prototypes. We could speed up testing processes by skipping
irrelevant columns and rows with only a small degrade in accuracy.
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1 Introduction

This paper considers image classification problem. While there are a vast vari-
ety of methods, we focus on prototype-based methods. We construct a prototype
representation for each image category and classify an unknown image to the
category whose prototype is the most similar to the image. Therefore, we need
to propose a method for constructing a prototype and a method for evaluating
similarity between images and prototypes. With respect to the former, we adopt



a probabilistic approach and describe each prototype with probability distri-
butions. With respect to the latter, we adopt a likelihood-based approach and
classify an unknown image to the category giving the largest likelihood.

In this paper, we assume that all images are resized to the same size, say,
N1 by N2 pixels and make image analysis focus only on color configuration. For
example, Tiny Images Dataset3 [7] is prepared for the experiments based on this
intuition, where all images are resized to 32 by 32 pixels. When all images are of
the same size, we can obtain a color histogram at each pixel location by counting
the number of occurrences of colors over multiple images. That is, we have N1N2

color histograms, each at different pixel locations. When we construct a set of
histograms in this manner from the images of the same category, e.g. images of
handwritten digit “5”, it can be expected that the obtained set of histograms
offers a color configuration specific to the category.

Formally, we construct a prototype as a set of parameters {ghijw}, where

ghijw is the probability that the wth color appears at the 2D pixel location (i, j)
for w = 1, . . . ,W , i = 1, . . . , N1, and j = 1, . . . , N2, where W is the number of
colors. The superscript h is an index designating a particular category. For every
pair of i and j,

∑W
w=1 g

h
ijw = 1 holds. We can calculate the log likelihood of an

unknown image as
∑
i,j,w nijw log ghijw, where nijw is equal to 1 if the image has

the wth color at the location (i, j) and is equal to 0 otherwise. Therefore, we can
determine the category to which the image should be classified by calculating a
log likelihood as arg maxh

∑
i,j,w nijw log ghijw for each h. We regard this as the

baseline method and would like to improve it with respect to efficiency.
Firstly, we reduce the complexity of prototypes. Any prototype given by the

baseline has N1N2W parameters, {ghijw}. With respect to the number of colors,
we simply quantize colors uniformly. A more intelligent quantization is reserved
as a future work. For the rest of the paper, let W denote the number of quantized
colors. We further reduce the number of probability distributions N1N2 by clus-
tering color histograms. This paper proposes a histogram clustering based on a
new nonparametric Bayesian probabilistic model called Multinomialized Subset
Infinite Relational Model (MSIRM), a modification of Subset Infinite Relational
Model (SIRM) by Ishiguro et al.[2] The features of MSIRM are given below.

1. MSIRM clusters histograms in column and row wise. Denote the number
of column clusters and that of row clusters as K1 and K2, respectively.
Each pixel location is now indexed by a pair (k1, k2) of a column cluster
ID k1 and a row cluster ID k2, where k1 = 1, . . . ,K1 and k2 = 1, . . . ,K2.
MSIRM associates each pair (k1, k2) of column and row cluster IDs with
different probability distributions over colors. Therefore, we can reduce the
complexity of prototypes from O(N1N2W ) to O(K1K2W ).

2. MSIRM determines K1 and K2 flexibly by using Chinese restaurant process
(CRP) [6] for calculating posterior probabilities of cluster assignments.

3. MSIRM detects irrelevant columns and rows based on the statistics found
in a given image set, and clustering is conducted only on relevant columns
and rows. This feature is inherited from SIRM.

3 http://groups.csail.mit.edu/vision/TinyImages/



The main feature of MSIRM is the third one, because we can reduce the
complexity of prototypes and can determine the number of clusters flexibly with
any nonparametric Bayesian clustering, e.g. Dirichlet process mixture of multi-
nomial [5]. In fact, the third feature can lead to an efficiency in time complexity.
So, secondly, we reduce the time complexity of testing processes with MSIRM.
The third feature of MSIRM can lead to a speeding up of testing processes, be-
cause we can reduce the execution time required for classifying unknown images
by skipping irrelevant columns and rows in log likelihood calculation. Technically
speaking, we assign probability one to the pixels of irrelevant columns and rows
in log likelihood calculation. We will later show that skipping irrelevant columns
and rows in log likelihood calculation only leads to a small degrade in accuracy.

The rest of the paper is organized as follows. Section 2 gives preceding pro-
posals important for us. Section 3 provides details of MSIRM. Section 4 includes
the results of our experiment. Section 5 concludes the paper with discussions.

2 Preceding Works

This paper proposes a nonparametric Bayesian model MSIRM as an extension
of Subset Infinite Relational Model (SIRM) by Ishiguro et al. [2]. SIRM is, in
turn, an improvement of Infinite Relational Model (IRM) by Kemp et al. [3].

Assume that we have a set of N1 entities of type TA and a set of N2 entities
of type TB . Further, assume that we have a binary relation R defined over the
domain TA×TB . The relation R can be represented by an N1×N2 binary matrix,
as is depicted in the left panel of Fig. 1. IRM discovers a bidirectional (horizontal-
vertical) clustering of the entities so that the N1 × N2 binary matrix takes on
a relatively clean block structure when sorted according to the clustering, as is
shown in the center panel of Fig. 1.

Let K1 and K2 be the number of column clusters and that of row clusters,
respectively. IRM employs Chinese restaurant process (CPR) for determining K1

and K2 flexibly. Further, IRM associates each block, enclosed by thick lines in the
center panel of Fig. 1, with a binomial distribution determining the probability
that the pairs of entities in the corresponding block fall under the relation R.
Obviously, each such block can be indexed by a pair of column cluster ID k1 ∈
{1, . . . ,K1} and row cluster ID k2 ∈ {1, . . . ,K2}. Therefore, IRM associates
each pair (k1, k2) of column cluster ID k1 and row cluster ID k2 with a binomial
distribution. IRM can be extended to the cases where we have more than two
types of entity, though such cases are not considered here.

When constructing a prototype from images of the same category, we consider
relations between pixel columns and pixel rows by taking an IRM-like approach,
because contiguous pixel locations are likely to give similar color distributions.
However, IRM has the following two problems:

1. IRM is vulnerable to noisy data. We need a mechanism for detecting irrel-
evant columns or rows, which should be excluded from clustering process.
This problem is addressed by SIRM [2].
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Fig. 1. Clustering of a binary relation (left) by IRM (center) and SIRM (right).

2. IRM can only handle binary data, though image colors are in general not bi-
nary. We need a mechanism for representing observed data with multinomial
distributions. This problem is addressed by MSIRM we propose.

Ishiguro et al. [2] improved IRM by introducing a mechanisim for detect-
ing irrelevant columns and rows. The proposed model is called Subset Infinite
Relational Model (SIRM), because a nonparametric Bayesian clustering is con-
ducted only on a subset of columns and rows after excluding irrelevant columns
and rows. We flip a coin for each column and each row to determine whether
relevant or not and then apply a clustering only to relevant columns and rows.
The pixels belonging to an irrelevant column or an irrelevant row are bundled
into a single cluster, as is shown in the right panel of Fig. 1 with red colored
cells, where column 4 and row 1 are detected as irrelevant by SIRM. However,
both IRM and SIRM can only handle binary data. Therefore, we modify SIRM
to obtain our probabilistic model, MSIRM.

Needless to say, any existing clustering method can be applied to color his-
tograms after ignoring 2D location information. The problem is then turned
into an ordinary histogram clustering. Therefore, in the experiment presented in
Section 4, we compared our proposal, not only with the baseline, but also with
Dirichlet process mixture of multinomial distributions (DP-multinomial) [5].

3 MSIRM

This section contains the details of Multinomialized Subset Infinite Relational
Model (MSIRM). We give a generative description of MSIRM below.

1. Draw a parameter λ1 of the binomial distribution Bi(λ1) for column-wise
coin flips from the Beta prior Be(a1, b1). Then, for each of the N1 columns,
draw a 0/1 value from Bi(λ1). Let r1i be the value for the ith column, which
is regarded as irrelevant if r1i = 0, and as relevant otherwise.

2. Draw a parameter λ2 of the binomial Bi(λ2) for row-wise coin flips from the
Beta prior Be(a2, b2). Then, for each of the N2 rows, draw a 0/1 value from
Bi(λ2). Let r2j be the value for the jth row, which is regarded as irrelevant
if r2j = 0, and as relevant otherwise.

3. Draw a set of parameters φkl = (φkl1, . . . , φklW ) of the multinomial distri-
bution Mul(φkl) from the Dirichlet prior distribution Dir(β). Mul(φkl) is the



multinomial for generating the color histograms belonging to the kth col-
umn cluster and, at the same time, to the lth row cluster. Each histogram
is defined over W different colors. φklw is the probability that the wth color
appears at a pixel location belonging to the kth column cluster and, at the
same time, to the lth row cluster.

4. Draw a set of parameters ψ = (ψ1, . . . , ψW ) of the multinomial Mul(ψ)
from the Dirichlet prior Dir(γ). Mul(ψkl) is the multinomial for generating
irrelevant histograms, i.e., the histograms belonging to an irrelevant column
or to an irrelevant row. ψw is the probability that the wth color appears at
a pixel location belonging to an irrelevant column or to an irrelevant row.

5. For each relevant column, draw a cluster ID based on the Chinese restaurant
process CRP(α1). We introduce a latent variable z1i, which is equal to k if
the ith column is relevant and belongs to the kth column cluster. Let m1k

be the number of columns that are relevant and belong to the kth column
cluster. CRP(α1) assigns the ith column to the kth column cluster with the
probability m1k

α1+M1
and to a new column cluster with the probability α1

α1+M1
,

where M1 ≡
∑
km1k, i.e., the number of relevant columns.

6. For each relevant row, draw a cluster ID based on the Chinese restaurant
process CRP(α2). We introduce a latent variable z2j , which is equal to l
if the jth row is relevant and belongs to the lth row cluster. Let m2l be
the number of rows that are relevant and belong to the lth row cluster.
Based on CRP(α2), we assign the jth row to the lth row cluster with the
probability m2l

α2+M2
and to a new row cluster with the probability α2

α2+M2
,

where M2 ≡
∑
lm2l, i.e., the number of relevant rows.

7. For each pixel location (i, j), i = 1, . . . , N1 and j = 1, . . . , N2, draw a color
from Mul(ψ) if r1ir2j = 0, and from Mul(φz1iz2j ) otherwise.

Assume that MSIRM finds K1 column clusters and K2 row clusters. Since
MSIRM prepares one multinomial for all irrelevant columns and rows, we have
K1K2 + 1 multinomials in total. Therefore, the complexity of prototypes is
O(K1K2W +N1 +N2), where N1 +N2 is the number of latent variables.

We adopt Gibbs sampling for inferring the posterior distributions of MSIRM.
Here we introduce some notations. Let nklw denote the number of times the
wth color occurs in total at the pixel locations belonging to the kth column
cluster and to the lth row cluster. Further, we define Nkl ≡

∑
w nklw, qw ≡∑

i,j nijw(1 − r1ir2j), and Q ≡
∑
w qw, where nijw is the number of times the

wth color appears at pixel location (i, j).

We consider an update of the cluster assignments for the ith column. Let z1i
denote the ID of the column cluster to which the ith column belongs. Then the
conditional probability p(z1i, r1i|X,Z\1i,R\1i), given the cluster assignments

Z\1i and the coin flips R\1i of the rest columns, can be written as follows:

p(z1i, r1i|X,Z\1i,R\1i) ∝ p(X+1i|z1i, r1i,X\1i,Z\1i,R\1i)p(z1i, r1i|Z\1i,R\1i) .
(1)



The superscript notation \1i means that only the ith column is removed. The
first half of the right hand side of Eq. (1) can be obtained as follows:

p(X+1i|z1i, r1i = 0,X\1i,Z\1i,R\1i)

=

∏
w Γ (q

\1i
w +

∑N2

j=1 nijw + γw)

Γ (Q\1i +
∑
w

∑N2

j=1 nijw +
∑
w γw)

·
Γ (Q\1i +

∑
w γw)∏

w Γ (q
\1i
w + γw)

and

p(X+1i|z1i = k, r1i = 1,X\1i,Z\1i,R\1i)

=

K2∏
l=1

∏
w Γ (n

\1i
klw +

∑N2

j=1 nijwr2jz2jl + βw)

Γ (N
\1i
kl +

∑
w

∑N2

j=1 nijwr2jz2jl +
∑
w βw)

Γ (N
\1i
kl +

∑
w βw)∏

w Γ (n
\1i
klw + βw)

·
∏
w Γ (q

\1i
w +

∑N2

j=1 nijw(1− r2j) + γw)

Γ (Q\1i +
∑
w

∑N2

j=1 nijw(1− r2j) +
∑
w γw)

Γ (Q\1i +
∑
w γw)∏

w Γ (q
\1i
w + γw)

. (2)

The second half of the right hand side of Eq. (1) can be obtained as follows:

p(z1i, r1i = 0|Z\1i,R\1i) =
b1 +

∑
i′ 6=i(1− r1i′)

a1 + b1 +N − 1
,

p(z1i = k, r1i = 1|Z\1i,R\1i) ∝ m\1i
1k ·

a1 +
∑
i′ 6=i r1i′

a1 + b1 +N − 1
, and

p(z1i = K1 + 1, r1i = 1|Z\1i,R\1i) ∝ α1 ·
a1 +

∑
i′ 6=i r1i′

a1 + b1 +N − 1
. (3)

A similar argument can be repeated for image rows. The derivation is almost the
same with that for SIRM. Further, we update the hyperparameters of Dirichlet
priors and Beta priors based on a method proposed by Minka [4]. The number
of Gibbs sampling iterations was set to 100 in our experiment.

4 Experiment

In the experiment, we compared the prototypes obtained by MSIRM with those
obtained by the baseline method and also with those obtained by DP-multinomial,
which was trained by Gibbs sampling [5].

Our target is MNIST dataset4, consisting of 60,000 training images and
10,000 test images of handwritten digits. All images are 28 by 28 pixels in size,
i.e., N1 = N2 = 28. We quantize 8 bit grayscale into 4 bit grayscale uniformly.
Therefore, W = 16. Let nhijw be the number of times the wth color appears at the
pixel location (i, j) in the training images belonging to the hth category. Then,
the color histogram placed at the location (i, j) is determined by nij1, . . . , nijW .
Therefore, each of the ten categories (i.e., from “0” to “9”) induces a set of
28× 28 = 784 histograms defined over 16 colors.

We obtain prototypes of the baseline method by calculating the probability

of the wth color at the location (i, j) for each category h as ghijw =
nh
ijw+ηw∑

w(nh
ijw+ηw)

.

4 http://yann.lecun.com/exdb/mnist/



This is a MAP estimation of the probability when a Dirichlet prior with hyperpa-
rameters η1, . . . , ηW is placed. We set ηw = 0.1 for all w. We classify 10,000 test
images by calculating the log likelihood of each image as

∑
i

∑
j n̂ijw log ghijw,

where n̂ijw is equal to 1 if the wth color appears at the location (i, j) of the
test image and is equal to 0 otherwise. Then we determine a candidate category
for each test image as arg maxh

∑
i

∑
j n̂ijw log ghijw. For DP-multinomial, we set

ghijws to the posterior probabilities estimated by Gibbs sampling. For MSIRM, we

obtain a candidate category as arg maxh
∑
i

∑
j n̂ijw

{
r1ir1j log

nz1iz2jw
+βw∑

w(nz1iz2jw
+βw)+

(1− r1ir1j) log qw+γw∑
w(qw+γw)

}
.

We give the results of the experiment. With respect to the complexity of
prototypes, DP-multinomial was superior to MSIRM for MNIST dataset. Let
K be the number of clusters given by DP-multinomial. Then, the complexity
of prototypes given by DP-multinomial is O(KW ), where N1N2 is the number
of latent variables for cluster assignments of pixel locations. Recall that the
complexity of prototypes given by MSIRM is O(K1K2W ) as is discussed in
Section 1. For MNIST dataset, KW < K1K2W , because K was around 85 for
all digits, and K1 and K2 were both around 20 for all digits.

However, MSIRM could accurately detect irrelevant columns and rows at
peripheral part of handwritten digit images as Figure 2 shows. We visualized
prototypes by mixing grayscale colors linearly by multiplying their probabilities
at each pixel location. In Fig. 2, the red colored area in each visualized prototype
corresponds to irrelevant columns and rows. Astonishingly, MSIRM accurately
detected the area irrelevant for identifying each digit. We consider this “trim-
ming” feature with respect to classification accuracy. The accuracies of the base-
line method, DP-multinomial, and MSIRM were 0.840, 0.839, and 0.837, respec-
tively. While the accuracies were far from the best reported at the Web site of the
dataset, they were good enough for a meaningful comparison. It can be said that
our method and DP-multinomial gave almost the same classification accuracies
with the baseline. However, for MSIRM, we can try another method for test im-
age classification by utilizing irrelevant columns and rows. That is, we simply skip
irrelevant columns and rows in calculation of log likelihoods. That is, we obtain

a candidate category as arg maxh
∑

{(i,j):r1ir1j=1}
∑
w n̂ijw log

nz1iz2jw
+βw∑

w(nz1iz2jw
+βw) .

In case of the prototypes in Figure 2, we could skip 32.2% (2,523 pixels) of the
28× 28× 10 = 7, 840 pixels, and this led to a speeding up of testing processes.
The achieved accuracy was 0.819, a small degrade from 0.837. This means that
we can speed up testing by utilizing the trimming effect brought by MSIRM.

5 Conclusion

This paper proposes a prototype-based image classification method using a non-
parametric Bayesian model called MSIRM. While MSIRM is a slight extension
of SIRM, it is our novel idea to apply an infinite relational model to image anal-
ysis, because we usually do not view an image as a collection of “multicolored”
relations between a column and a row. MSIRM could detect irrelevant columns



Fig. 2. Irrelevant part trimming achieved by MSIRM. The original image size is 28×28.
The size of the relevant part of each prototype is: 22 × 22 for “0”, 21 × 23 for “1”,
25×25 for “2”, 23×23 for “3”, 23×24 for “4”, 23×23 for “5”, 22×23 for “6”, 25×23
for “7”, 23 × 22 for “8”, and 22 × 24 for “9”.

and rows accurately at peripheral part of handwritten digit images and could
speed up testing processes by skipping irrelevant columns and rows with only a
small degrade in accuracy. While DP-multinomial is comparable with MSIRM
in its classification accuracy and is even superior to MSIRM in reduction of pro-
totype complexity, it cannot detect any irrelevant part of digit images and thus
cannot reduce the time required for test image classification.

We have a future plan to extend the proposed method so as to quantize colors
in a nonparametric Bayesian manner by introducing an additional axis aside
from the column and the row axes. Further, we also have a plan to incorporate a
mechanism of clustering training images and to give more than one prototypes
for each category.
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