
ChronoSAGE: Diversifying Topic Modeling
Chronologically

Abstract. In this paper, we propose a new chronological modeling of
topics latent in documents. We apply sparse additive generative mod-
els (SAGE) [5] in a manner so that we diversify topic modeling results
chronologically by using document timestamps. We call our approach
ChronoSAGE. SAGE can represent each word probability by exponential
of the sum of multiple parameters representing various facets of docu-
ments. Therefore, we prepare three types of parameter to utilize docu-
ment timestamps: the parameters for each topic, those for each times-
tamp, and those for each pair of topic and timestamp. Consequently,
word tokens are generated not only in a topic-specific manner, but also
in a time-specific manner. We first compare ChronoSAGE and vanilla
SAGE with LDA in terms of pointwise mutual information (PMI) [10] to
show the practical effectiveness of SAGE-type approaches. We then give
examples of time-differentiated latent topics obtained by ChronoSAGE
to show the usefulness of our chronological topic modeling. As another
contribution, we also provide an approximated inference that makes the
implementation far easier.

1 Introduction

Topic modeling approach prevails in the field of text mining research, because
it provides a clear and compact representation of a wide variety of topics, which
are latent and intertwined in large document sets. Latent Dirichlet allocation
(LDA) [4] represents each latent topic as a probability distribution over words
and extracts a predefined number, say K, of topics from a given document set.
Each such distribution gives a large probability to the words whose meaning is
closely related to a particular subject. Consequently, LDA provides a summariz-
ing view of the document set as word lists, each expressing a particular subject
in a human readable way (cf. Figure 8 in [4]).

However, many recent applications of text mining require utilizing document
metadata effectively to make topic modeling results more persuasive. Especially,
spatio-temporal metadata of documents are mainly considered due to their im-
portance in social media texts, newswire documents, academic articles, etc. In
this paper, we focus on document timestamps and utilize them in topic modeling



by making per-topic probability distributions over words dependent on times-
tamps. While we follow a similar line to existing proposals [3, 14, 11], we make
our approach based on sparse additive generative models (SAGE) [5]. We adopt
the multifaceted SAGE introduced in Section 5 of [5] to diversify topic mod-
eling results chronologically. We call our approach ChronoSAGE and call the
LDA-type SAGE in its simplest form, given in Section 4 of [5], as vanilla SAGE.

ChronoSAGE has three types of parameter for defining word probabilities:
the parameters for each topic, those for each timestamp, and those for each pair
of topic and timestamp. The parameters of the first type give omni-temporal
word probabilities for each topic. Those of the second type are introduced to find
the words trivially dependent on timestamps, e.g. “Sunday”, “May”, “2001”,
etc, which are not informative for chronological topic modeling. Those of the
third type give time-differentiated word probabilities for each topic, which are
the most important for our application. Consequently, ChronoSAGE outputs as
many human readable word lists as timestamps for each topic. That is, when
the number of timestamps is T , ChronoSAGE outputs TK word lists, each
corresponding to a different per-topic and time-dependent distribution.

It may be considered as a disadvantage of ChronoSAGE that the number
of parameters representing word probabilities is large, which is equal to KW +
TW + TKW when the number of different words is W . Vanilla SAGE and
LDA only require KW parameters, because they only give omni-temporal word
probabilities. However, this is not a disadvantage, because text mining in recent
days is required to analyze document sets where the number of documents, say
D, is larger than W in order of magnitude. Since W does not increase so rapidly
as D, the number of parameters representing per-document topic probabilities,
which amounts to DK, is more critical. Further, it may be argued that the
inherent relationship between timestamps should be considered by making the
parameters at timestamp t dependent on those at t − 1 as in [3, 14, 11]. In this
paper, we take a different approach and assume that the probability of word w
in topic k at timestamp t is derived from the omni-temporal probability of word
w in topic k, not from the corresponding probability at timestamp t− 1.

This paper provides another contribution aside from the utilization of docu-
ment timestamps in SAGE. We provide a new approximated inference applicable
to any version of SAGE. This revised inference uses Newton-Raphson method
only in the single variable case, as well as avoiding using Hessian matrices. Con-
sequently, we need no calls of quasi-Newton method like L-BFGS and can make
implementation far easier. In sum, the contributions of this paper are 1) to pro-
vide a novel application of SAGE standing on its own merit and 2) to devise a
new inference for SAGE that makes parameter updates easier to implement.

In the evaluation experiment, we first compare ChronoSAGE and vanilla
SAGE with LDA with respect to their basic competence in topic modeling. While
perplexity is widely used as an evaluation measure for topic models, we adopt
an external evaluation measure, called pointwise mutual information (PMI) [10],
to achieve a realistic evaluation. PMI is calculated by using the entire English
Wikipedia that was downloaded on June 6, 2013 and contains 7,298,899 entries.



Table 1. Definition of symbols.

xdi ∈ W the word observed as the ith token of document d
zdi ∈ K the latent topic to which the ith token of document d is assigned
yd ∈ T the observed timestamp of document d

nd the number of word tokens appearing in document d
nw the frequency of word w in the entire document set
mw the background parameter for word w

η
(1)
kw the parameter for word w with respect to topic k

η
(2)
tw the parameter for word w with respect to timestamp t

η
(3)
tkw the parameter for word w with respect to the pair of timestamp t and topic k

ϕtkw the probability that w expresses topic k in the document having timestamp t.

τ
(1)
kw the variance of the Gaussian distribution generating η

(1)
kw

τ
(2)
tw the variance of the Gaussian distribution generating η

(2)
tw

τ
(3)
tkw the variance of the Gaussian distribution generating η

(3)
tkw

θdk the probability that a word token in document d represents topic k

The size of our reference corpus is enough to make our evaluation reliable. The
result will show that both ChronoSAGE and vanilla SAGE can give a better
PMI than LDA. Further, we present time-dependent word lists extracted by
ChronoSAGE and discuss them from a qualitative view point. The discussion
illustrates that ChronoSAGE can diversify topic modeling results chronologically
without harming the basic competence vanilla SAGE has as a topic model.

The rest of the paper is organized as follows. Section 2 describes the model
structure of ChronoSAGE and its variational inference. Section 3 presents the
results of evaluation experiment. Section 4 reviews existing approaches. Section 5
concludes the paper with a summary and a discussion on future work.

2 ChronoSAGE

ChronoSAGE is an application of the multifaceted SAGE for utilizing document
timestamps. However, our description of ChronoSAGE is more than a simple
repetition of that given in [5]. ChronoSAGE has its own application-dependent
characteristics and further is equipped with a new approximated inference.

2.1 Generative description

In this paper, we identify documents, words, topics, and timestamps with its
index number.D = {1, . . . , D} is the set of documents,W = {1, . . . ,W} is the set
of different words, K = {1, . . . ,K} is the set of latent topics, and T = {1, . . . , T}
is the set of document timestamps. Table 1 contains the definition of symbols.

ChronoSAGE generates documents as follows.

– With respect to each word w ∈ W , draw parameters τ
(1)
kw for each k ∈ K,

τ
(2)
tw for each t ∈ T , and τ

(3)
tkw for each pair (t, k) ∈ T ×K from the improper

Jeffrey’s prior distribution p(τ) ∝ 1/τ . These are variance parameters. We
adopt the Jeffrey’s prior to reduce the number of free parameters.

– With respect to each w ∈ W, draw parameters η
(1)
kw , η

(2)
tw , and η

(3)
tkw as follows:



• For each k, draw η
(1)
kw from the zero-mean Gaussian distributionN (0, τ

(1)
kw ).

• For each t, draw η
(2)
tw from the zero-mean Gaussian N (0, τ

(2)
tw ).

• For each pair (t, k), draw η
(3)
tkw from the zero-mean Gaussian N (0, τ

(3)
tkw).

– Obtain the probability ϕtkw that word w is used to express topic k in the
documents having timestamp t as follows:

ϕtkw ≡
exp(mw + η

(1)
kw + η

(2)
tw + η

(3)
tkw)∑

v exp(mv + η
(1)
kv + η

(2)
tv + η

(3)
tkv)

. (1)

– For each document d ∈ D, draw a multinomial parameter θd = (θd1, . . . , θdK)
from the symmetric Dirichlet prior Dirichlet(α). Further,
• For the ith word token of document d, draw a latent topic zdi from

the multinomial distribution Multi(θd) and draw a word xdi from the
multinomial Multi(ϕydzdi

) as the ith token of document d.

The important feature of ChronoSAGE is that each word probability ϕtkw is

obtained by combining the four parameters: mw, η
(1)
kw , η

(2)
tw , and η

(3)
tkw. In vanilla

SAGE, we set ϕkw ∝ exp(mw+ηkw) and use no time-specific word probabilities.
The role played by each parameter in ChronoSAGE is explained below.

– mw is equivalent to the log of the background probability of word w, because
it depends neither on topic k nor on timestamp t. While mw is treated as a
constant in [5], we update mw in the inference as will be shown later.

– η
(1)
kw represents the dependency of the probability of word w on topic k. This
parameter reflects one of the key ideas in topic modeling, i.e., an idea that
different word probability distributions correspond to different topics.

– η
(2)
tw represents the dependency of the probability of word w on timestamp
t. This parameter is introduced to find the words showing a non-informative
time-dependency. Table 2 gives an example of top 10 words sorted by their

η
(2)
tw for each timestamp t. This example is obtained from a topic modeling
result of ChronoSAGE for TDT4, which is one among the three document
sets used in our experiment. In TDT4 document set, we give the same times-
tamp to the documents belonging to the same range of seven days (e.g. from
December 14 to 20, 2000). Table 2 shows that, for almost all timestamps, top
seven words are the dates falling in the corresponding range of seven days.

η
(2)
tw is introduced to remove this type of trivial dependency on timestamps.

– η
(3)
tkw is the most important, because we devise ChronoSAGE to diversify

topic modeling results chronologically. η
(3)
tkw represents a time-dependent dis-

placement from η
(1)
kw . This type of parameter tells how topic-specific word

probabilities are diversified according to document timestamps. We will later

give examples of word lists sorted by η
(3)
tkw, where the words having trivial

time-dependency do not appear owing to the introduction of η
(2)
tw .

We believe that the discussion above will prove the uniqueness of our ap-
proach. While we introduce no modification into the model structure of the
multifaceted SAGE proposed in [5], our application of it for chronological topic
analysis stands on its own application-dependent merit.



2.2 Variational lower bound

Based on the generative description of ChronoSAGE in Section 2.1, we obtain
the following full joint distribution:

p(x, z,η(1),η(2),η(3), τ (1), τ (2), τ (3),θ|m,α)

∝
∏
k,w

[
1

τ
(1)
kw

·
exp

{
− (η

(1)
kw)

2/(2τ
(1)
kw )

}√
2πτ

(1)
kw

]
·
∏
t,w

[
1

τ
(2)
tw

·
exp

{
− (η

(2)
tw )2/(2τ

(2)
tw )

}√
2πτ

(2)
tw

]

·
∏
t,k,w

[
1

τ
(3)
tkw

·
exp

{
− (η

(3)
tkw)

2/(2τ
(3)
tkw)

}√
2πτ

(3)
tkw

]
·
∏
d

Γ (Kα)

Γ (α)K

∏
k

θα−1
dk

·
D∏

d=1

nd∏
i=1

K∏
k=1

{
θdk ·

exp(mxdi
+ η

(1)
kxdi

+ η
(2)
ydxdi + η

(3)
ydkxdi

)∑
v exp(mv + η

(1)
kv + η

(2)
ydv + η

(3)
ydkv

)

}δ(zdi=k)

, (2)

where δ(·) is 1 if the condition in the parentheses is true and is 0 otherwise.
With respect to η(1), η(2), and η(3), we optimize them directly. With respect

to the other parameters, we obtain their posteriors by a variational inference.
Let q(z, τ (1), τ (2), τ (3),θ) denote a variational posterior. We assume that this
posterior is factorized as q(z)q(τ (1))q(τ (2))q(τ (3))q(θ) and obtain a lower bound
of the log of the marginal probability distribution p(x,η(1),η(2),η(3)|m, α) by
using Jensen’s inequality as follows:

ln p(x,η(1),η(2),η(3)|m, α)

≥
∫

q(τ (1)) ln p(η(1)|τ (1))dτ (1) −D[q(τ (1)) ∥ p(τ (1))]

+

∫
q(τ (2)) ln p(η(2)|τ (2))dτ (2) −D[q(τ (2)) ∥ p(τ (2))]

+

∫
q(τ (3)) ln p(η(3)|τ (3))dτ (3) −D[q(τ (3)) ∥ p(τ (3))]

+

∫ ∑
z

q(θ)q(z) ln p(z|θ)dθ +
∑
z

q(z) ln p(x|m, z,η(1),η(2),η(3))

+

∫
q(θ) ln p(θ|α)dθ −

∫
q(θ) ln q(θ)dθ −

∑
z

q(z) ln q(z) , (3)

where D[q(τ ) ∥ p(τ )] ≡
∫
q(τ ) ln q(τ )dτ −

∫
q(τ ) ln p(τ )dτ , i.e., Kullback-

Leibler divergence. We further assume the followings for the posteriors:

– q(τ (1)) is factorized as
∏

k,w q(τ
(1)
kw ). Each q(τ

(1)
kw ) is a Gamma distribution

Gamma(a
(1)
kw, b

(1)
kw). We assume the same for q(τ (2)) and q(τ (3)).

– q(θ) is factorized as
∏

d q(θd). Each q(θd) is a Dirichlet distribution Dirichlet(ζd).
– q(z) is factorized as

∏
d,i q(zdi). zdi is drawn from a multinomial distribution

Multi(λdi), where λdik is a variational probability that zdi = k holds.



Table 2. Top 10 words sorted by their ηtw for each t in case of TDT4.

t = 0 edt paralymp lebanon 32nd wild-card u.s china russia join carter’s
t = 1 kippur 10-13 lebanon china palestinian text join iran parti dynamit
t = 2 10-14 10-16 10-18 10-15 10-19 10-17 10-20 sharm lebanon edt
t = 3 10-24 10-23 10-22 10-25 10-21 10-26 10-27 lebanon china octob
t = 4 10-29 10-28 10-31 10-30 11-3 leipzig lebanon stump join 11-1
t = 5 11-10 11-8 11-9 11-6 11-7 11-5 convuls 11-4 russia clinton
t = 6 11-17 11-16 11-11 11-14 11-15 11-12 11-13 anchorag china russia
t = 7 11-18 11-19 11-24 11-22 11-23 11-20 11-21 930-vote china taint
t = 8 11-25 11-27 11-28 11-26 11-30 11-29 seclus join novemb bush
t = 9 12-8 12-6 12-5 12-7 12-3 537-vote 12-4 russia parti novemb
t = 10 12-12 12-15 12-14 12-10 12-13 12-11 12-9 decemb join novemb
t = 11 12-17 12-18 12-21 12-20 12-19 12-22 12-16 ronni veneman china
t = 12 12-24 12-28 12-29 12-23 12-27 12-26 12-25 alcoa jiri holidai
t = 13 309 tabasco 2001 1-5 vy 12-0 free-agent lighten 31st 1-4
t = 14 presid-elect’s 1-12 1-8 1-11 1-9 1-10 1-7 70-year-old u.s tycoon
t = 15 1-14 1-13 1-19 1-18 1-17 1-16 1-15 rosa 560 lyle
t = 16 1-21 1-26 1-25 1-22 1-20 1-23 1-24 hanun faizabad taba
t = 17 1-28 1-31 1-30 1-27 1-29 dawosi bhuj fasa greenspan’s 960

2.3 Parameter updates

We denote the right hand side of Eq. (3) as L for short. By maximizing L with
respect to each parameter, we obtain a formula for updating the parameter.

The terms related to topic assignments z in L can be rewritten as follows:

Lz =
∑
d,i,k

λdik

{
Ψ(ζdk)− Ψ(

∑
k

ζdk)
}

+
∑
d,i,k

λdik ln
exp(mxdi

+ η
(1)
kxdi

+ η
(2)
ydxdi + η

(3)
ydkxdi

)∑
w exp(mw + η

(1)
kw + η

(2)
ydw + η

(3)
ydkw

)
−

∑
d,i,k

λdik lnλdik , (4)

where Ψ(·) is digamma function. λdik is a variational posterior probability that
the ith word token in document d is assigned to topic k. ζdk is a variational
Dirichlet posterior parameter of topic k in document d. By maximizing Lz with
respect to λdik, we obtain the following update for λdik:

λdik ∝ exp
{
Ψ(ζdk)− Ψ

(∑
k

ζdk
)}
·
exp(mxdi

+ η
(1)
kxdi

+ η
(2)
ydxdi + η

(3)
ydkxdi

)∑
w exp(mw + η

(1)
kw + η

(2)
ydw + η

(3)
ydkw

)
. (5)

We rewrite the terms related to per-document topic distributions θ in L as:

Lθ =
∑
d,i,k

λdik

{
Ψ(ζdk)− Ψ(

∑
k

ζdk)
}
+
∑
d,k

(αk − ζdk)
{
Ψ(ζdk)− Ψ(

∑
k

ζdk)
}

+
∑
d

logΓ (
∑
k

αk)−
∑
d,k

logΓ (αk)−
∑
d

logΓ (
∑
k

ζdk) +
∑
d,k

logΓ (ζdk). (6)

By solving ∂Lθ/∂ζdk = 0, we obtain an update as ζdk = αk + ndk, where we
define ndk ≡

∑
i λdik. The derivation is the same as that of the vanilla LDA [4].



The terms related to variance parameters τ (1) in L can be rewritten as:

L(τ (1)) =
∑
k,w

{
−

b
(1)
kw(η

(1)
kw)

2

2(a
(1)
kw − 1)

−
(
a
(1)
kw +

1

2

)
Ψ(a

(1)
kw)

+
ln b

(1)
kw

2
+ a

(1)
kw + lnΓ (a

(1)
kw)

}
+ const. (7)

By solving ∂L(τ (1))/∂τkw = 0, we obtain the following updates for a
(1)
kw and b

(1)
kw:

a
(1)
kw ← a

(1)
kw +

2b
(1)
kw(η

(1)
kw)

2(a
(1)
kw − 1)−2 −

(
a
(1)
kw + 1

2

)
Ψ ′(a

(1)
kw) + 1

b
(1)
kw(η

(1)
kw)

2(a
(1)
kw − 1)−3 + Ψ ′(a

(1)
kw) +

(
a
(1)
kw + 1

2

)
Ψ ′′(a

(1)
kw)

(8)

b
(1)
kw ← (a

(1)
kw − 1)(η

(1)
kw)

−2 (9)

Similar updates can also be obtained for τ (2) and τ (3). Eq. (9) will be useful in

the discussion below when we eliminate a
(1)
kw and b

(1)
kw from parameter updates.

We estimate η(1), η(2), and η(3) by maximizing L directly. A function to be
maximized with respect to η(1) is:

L(η(1)) =
∑
k,w

nkwη
(1)
kw −

∑
t,k

ntk ln
{∑

w

exp(mw + η
(1)
kw + η

(2)
tw + η

(3)
tkw)

}
−

b
(1)
kw(η

(1)
kw)

2

2(a
(1)
kw − 1)

+ const., (10)

where we define nkw ≡
∑

d

∑
{i:xdi=w} λdik and ntk ≡

∑
{d:yd=t}

∑
i λdik.

Here we propose a new approximation to avoid inverting Hessian matrices (cf.
Section 3.1 of [5]) and thus to make variational inferences far easier to implement.

Our approximation is based on the observation that the log function satisfies
lnx ≤ x

ξ −1+ln ξ for any ξ > 0. This observation is also used by [2] in a different
situation. By introducing an auxiliary variable ξtk for each pair of timestamp t
and latent topic k, we obtain a lower bound of Eq. (10) as follows:

L(η(1)) ≥
∑
k,w

nkwη
(1)
kw −

∑
t,k

ntk

∑
w exp(mw + η

(1)
kw + η

(2)
tw + η

(3)
tkw)

ξtk

−
∑
t,k

ntk ln ξtk −
∑
k,w

(η
(1)
kw)

2

2(a
(1)
kw − 1)b

(1)
kw

+ const. (11)

We denote this lower bound as l(η(1)) and maximize it in place of L(η(1)). The

first and the second derivatives of l(η(1)) with respect to η
(1)
kw are obtained as:

∂l(η(1))

∂η
(1)
kw

= nkw − eη
(1)
kw

∑
t

ntk exp(mw + η
(2)
tw + η

(3)
tkw)

ξtk
−

η
(1)
kw

(a
(1)
kw − 1)b

(1)
kw

,

∂2l(η(1))

∂η
(1)
kw

2 = −eη
(1)
kw

∑
t

ntk exp(mw + η
(2)
tw + η

(3)
tkw)

ξtk
− 1

(a
(1)
kw − 1)b

(1)
kw

. (12)



Table 3. Specifications of the three document sets used in the experiment.

D: # documents W : # words T : # timestamps average document length

DBLP 2,093,913 10,694 22 5.2
NSF 128,181 19,066 13 95.9
TDT4 96,246 15,153 18 156.6

Further, we use Eq. (9) to eliminate a
(1)
kw and b

(1)
kw and obtain a Newton-Raphson

update of η
(1)
kw as follows:

η
(1)
kw ← η

(1)
kw +

{nkw − Ckwe
η
(1)
kw}(η(1)kw)

2 − η
(1)
kw

Ckweη
(1)
kw(η

(1)
kw)

2 + 1
, (13)

where we define Ckw ≡
∑

t ntk exp(mw+η
(2)
tw +η

(3)
tkw)/ξtk. A similar simple update

can be obtained also for η
(2)
tw and η

(3)
tkw. While mw is kept as a constant in the

original paper of SAGE [5], we update mw by maximizing L. The relevant terms
in L can be rewritten as:

L(m) ≥
∑
w

nwmw −
∑
t,k

ntk

∑
w exp(mw + η

(1)
kw + η

(2)
tw + η

(3)
tkw)

ξtk
. (14)

Let l(m) denote the right hand side of Eq. (14). By solving ∂l(m)/∂mk = 0, we
obtain an update of mw as:

mw ← ln
nw∑

t,k ntk exp(η
(1)
kw + η

(2)
tw + η

(3)
tkw)/ξtk

. (15)

We update mw also for vanilla SAGE by mw ← ln nw∑
k nk exp(η

(1)
kw)/ξk

in the exper-

iment. By differentiating the lower bound achieved by our new approximation

with respect to ξtk, we obtain the following update: ξtk ←
∑

w exp
(
mw + η

(1)
kw +

η
(2)
tw + η

(3)
tkw

)
. For the Dirichlet hyperparameter α, we used a fixed value 50/K,

because its optimization gave no substantial difference in evaluation results.

3 Evaluation experiment

We perform an evaluation of ChronoSAGE in two phases. Firstly, we com-
pare ChronoSAGE and vanilla SAGE with LDA. This comparison will reveal
that ChronoSAGE has almost the same topic modeling competence with vanilla
SAGE and that ChronoSAGE and vanilla SAGE are superior to LDA. Sec-
ondly, we give examples of timestamped word lists extracted by ChronoSAGE
and discuss them from a qualitative viewpoint. This discussion will reveal that
ChronoSAGE successfully diversify topic modeling results chronologically. Be-
fore giving the results of evaluation, we describe experiment settings in detail.

We used three document sets, called DBLP, NSF, and TDT4, whose spec-
ifications are summarized in Table 3. DBLP is a set of paper titles in DBLP



computer science bibliography, available at its Web site1. We used a version of
dblp.xml downloaded on June 11, 2013. We removed all records whose publica-
tion year was 2013, because the number of such records was small. We regarded
paper title as document and publication year as document timestamp. NSF is
a set of research awards abstracts available at the UCI machine learning repos-
itory2. Also in this document set, we regarded publication year as timestamp.
TDT4 is a corpus for the TDT4 topic detection and tracking evaluation by
LDC3. In TDT4, we gave the same timestamp to the documents belonging to
the same chronological range of seven days (e.g. from December 14 to 20, 2000)4.
We preprocessed each document set by a series of standard procedures. How-
ever, stemming was not applied to DBLP, because paper titles were short, and
therefore word forms were thought to play an important role.

We ran the variational inference presented in Section 2 on each document
set. The inference for vanilla SAGE was achieved by ignoring time-dependent
parameters in the inference for ChronoSAGE. Before staring an instance of the
inference, we conducted 500 iterations of collapsed Gibbs sampling (CGS) for

LDA [6] and initialized η
(1)
kws based on the topic assignment result as ln p(w|k)−

mw, where p(w|k) is the probability of word w within topic k. η
(2)
tw s and η

(3)
tkws

were initialized to 1. After 500 iterations of CGS, we ran 100 iterations of the
variational inference. We confirmed that this number of iterations was enough
by inspecting the change in the variational lower bound. With respect to K,
we tested the following two settings: K = 100 and K = 300. For each of the
compared approaches, i.e, LDA, vanilla SAGE, and ChronoSAGE, and for each
setting of K, we ran the variational inference ten times starting from a random
initialization of topic assignments in CGS. Consequently, we obtained ten topic
modeling results for each compared approach and for each setting of K.

3.1 Comparison using external measure

While perplexity is often used for an evaluation of topic models, we adopted an
external measure, called pointwise mutual information (PMI) [10], for a more
realistic evaluation. We did not use coherence measure [9], because this measure
is likely to give a worse result for a larger number of topics, as we can observe
in Figure 6 of [1], and thus makes the comparison between different K difficult.
We used the entire English Wikipedia, which was downloaded on June 6, 2013
and contains 7,298,899 entries, as the reference corpus for PMI.

The evaluation was done as follows. We selected top 10 words (w1, . . . , w10)

sorted by η
(1)
kw for each k and calculated PMI for all pairs of words as PMI(wi, wj) =

ln
p(wi,wj)

p(wi)p(wj)
, for i, j ∈ {1, . . . , 10}. The probability p(wi) is defined as Ri/R,

1 http://dblp.uni-trier.de/xml/
2 http://archive.ics.uci.edu/ml/
3 http://projects.ldc.upenn.edu/TDT4/
4 We make the first range contain from December 1 to 6, 2000 and the last one contain
from January 27 to 31, 2001 so that the sizes of these two ranges, placed at both
ends of the whole period, are as equal as possible.



Fig. 1. Comparing ChronoSAGE with vanilla SAGE and LDA in PMI on DBLP (left),
NSF (center), and TDT4 (right).

where Ri is the number of documents containing wi in the reference corpus, and
R is the size of the reference corpus. The co-occurrence probability p(wi, wj) is
defined as Rij/R, where Rij is the number of documents containing both wi and
wj in the reference corpus. We compared the three approaches by the median of
all calculated PMIs. A larger median is better.

Fig. 1 summarizes the evaluation. Ten medians obtained from the ten dif-
ferent instances of the inference, each starting from a random initialization of
topic assignments in CGS, are plotted for each approach and for each K. The
horizontal axis represents the magnitude of PMI. As Fig. 1 shows, ChronoSAGE
gave almost the same medians as vanilla SAGE. Further, both methods worked
better than LDA for both NSF and TDT4 and at least gave a result compara-
ble with LDA for DBLP. Therefore, it can be concluded that SAGE-type topic
modeling is a better choice than LDA in terms of PMI.

3.2 Timestamped word lists

Next, we give an example of timestamped word lists obtained by ChronoSAGE in
Fig. 2. We obtained this example from one among the ten results ChronoSAGE
gave for DBLP when K = 300. The two panels in Fig. 2 correspond to two
among 300 topics. The left and the right panel give word lists seemingly related
to mobile communications and to video coding, respectively. On the top of each

panel, top 15 words are enumerated based on η
(1)
kw . These words represent the

omni-temporal content of the corresponding latent topic. The size of an ellipse

behind each word indicates the magnitude of η
(1)
kw . Below these top 15 words,

we present top 10 words for each timestamp based on η
(3)
tkw. The size of a circle

behind each timestamp indicates the largest η
(3)
tkw for each t.

On the left panel in Fig. 2, we can read out a clear trend transition. For
example, the word GSM, mainly related to 2G networks, appears in the word
lists of earlier years. The word GPRS comes after it and appears in the lists of
2001 and 2002. The word LTE appears only in the lists of recent years. While we
do not explicitly model the inherent relationships between timestamps, we can
observe such a clear trend. The right panel provides an interesting observation.
For example, the word HDTV cannot be found in the word lists after 1995. This
may be because HDTV had already become a part of consumer technologies
at that time. MPEG-2 and MPEG-4 are found in the lists of late 90’s and



Fig. 2. Timestamped word lists extracted by ChronoSAGE from DBLP. The left and
the right panels correspond to different latent topics seemingly related to mobile com-
munications and to video coding, respectively.

early 2000’s. H.264 comes after them, and HEVC appears in the lists of very
recent years. It can be concluded that ChronoSAGE extracts clear trends by
diversifying topic modeling chronologically with document timestamps.

4 Existing approaches

Among existing approaches, the structural topic model (STM) [13] is closest
to ChronoSAGE in its use of the multifaceted SAGE. The authors make word
probabilities proportional to an exponential of the sum of the four parameters (cf.
Eq. (9) in [13]) so that word use within a topic varies by multiple factors. This is
also an application of the multifaceted SAGE and is similar to ours in this sense.
However, the authors consider covariates, e.g. gender or political ideology, as
the factors diversifying word probabilities. On the other hand, we use document
timestamps to diversify word probabilities and clarify an application-dependent
merit of ChronoSAGE through our experiment.

The dynamic topic model (DTM) [3] has time-dependent word probabilities

that can be written as ϕtkw ≡ exp(η
(3)
tkw)/

∑
v exp(η

(3)
tkv) by using our symbols.

However, as is discussed in Section 2.1, it is important for us to remove a trivial
time-dependency from each word probability ϕtkw by introducing a parameter

η
(2)
tw that is dependent only on timestamp t and not on any latent topics. This
technical aspect differentiates ChronoSAGE from DTM.



Factorial LDA [8] has a similar flavor to SAGE, because an exponential of
the sum of multiple parameters is used to vary word probabilities. However,
the exponential is used to describe not word probabilities themselves, but hy-
perparameters of Dirichlet prior distributions that generate word probability
distributions. Consequently, the inference requires the multivariate gradient as-
cent for optimizing the parameters. In contrast, our approximated inference only
uses the Newton-Raphson method in the single variable case and makes the im-
plementation easier.

5 Conclusions

In this paper, we proposed ChronoSAGE, a novel application of the multifaceted
SAGE standing on its own merit. As the results of evaluation experiment re-
vealed, ChronoSAGE has the same competence with vanilla SAGE in topic
modeling and, however, can extract informative timestamped word lists, which
cannot be obtained by vanilla SAGE. Further, we devised a new approximated
inference using the Newton-Raphson method only in the single variable case. Our
important future work is to explicitly model the inherent dependency among the
timestamps by e.g. using Gaussian processes [12].
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