ChronoSAGE: Diversifying Topic Modeling
Chronologically

Abstract. In this paper, we propose a new chronological modeling of
topics latent in documents. We apply sparse additive generative mod-
els (SAGE) [5] in a manner so that we diversify topic modeling results
chronologically by using document timestamps. We call our approach
ChronoSAGE. SAGE can represent each word probability by exponential
of the sum of multiple parameters representing various facets of docu-
ments. Therefore, we prepare three types of parameter to utilize docu-
ment timestamps: the parameters for each topic, those for each times-
tamp, and those for each pair of topic and timestamp. Consequently,
word tokens are generated not only in a topic-specific manner, but also
in a time-specific manner. We first compare ChronoSAGE and vanilla
SAGE with LDA in terms of pointwise mutual information (PMI) [10] to
show the practical effectiveness of SAGE-type approaches. We then give
examples of time-differentiated latent topics obtained by ChronoSAGE
to show the usefulness of our chronological topic modeling. As another
contribution, we also provide an approximated inference that makes the
implementation far easier.

1 Introduction

Topic modeling approach prevails in the field of text mining research, because
it provides a clear and compact representation of a wide variety of topics, which
are latent and intertwined in large document sets. Latent Dirichlet allocation
(LDA) [4] represents each latent topic as a probability distribution over words
and extracts a predefined number, say K, of topics from a given document set.
Each such distribution gives a large probability to the words whose meaning is
closely related to a particular subject. Consequently, LDA provides a summariz-
ing view of the document set as word lists, each expressing a particular subject
in a human readable way (cf. Figure 8 in [4]).

However, many recent applications of text mining require utilizing document
metadata effectively to make topic modeling results more persuasive. Especially,
spatio-temporal metadata of documents are mainly considered due to their im-
portance in social media texts, newswire documents, academic articles, etc. In
this paper, we focus on document timestamps and utilize them in topic modeling



by making per-topic probability distributions over words dependent on times-
tamps. While we follow a similar line to existing proposals [3, 14, 11], we make
our approach based on sparse additive generative models (SAGE) [5]. We adopt
the multifaceted SAGE introduced in Section 5 of [5] to diversify topic mod-
eling results chronologically. We call our approach ChronoSAGE and call the
LDA-type SAGE in its simplest form, given in Section 4 of [5], as vanilla SAGE.

ChronoSAGE has three types of parameter for defining word probabilities:
the parameters for each topic, those for each timestamp, and those for each pair
of topic and timestamp. The parameters of the first type give omni-temporal
word probabilities for each topic. Those of the second type are introduced to find
the words trivially dependent on timestamps, e.g. “Sunday”, “May”, “2001”,
etc, which are not informative for chronological topic modeling. Those of the
third type give time-differentiated word probabilities for each topic, which are
the most important for our application. Consequently, ChronoSAGE outputs as
many human readable word lists as timestamps for each topic. That is, when
the number of timestamps is 7', ChronoSAGE outputs T'K word lists, each
corresponding to a different per-topic and time-dependent distribution.

It may be considered as a disadvantage of ChronoSAGE that the number
of parameters representing word probabilities is large, which is equal to KW +
TW + TKW when the number of different words is W. Vanilla SAGE and
LDA only require KW parameters, because they only give omni-temporal word
probabilities. However, this is not a disadvantage, because text mining in recent
days is required to analyze document sets where the number of documents, say
D, is larger than W in order of magnitude. Since W does not increase so rapidly
as D, the number of parameters representing per-document topic probabilities,
which amounts to DK, is more critical. Further, it may be argued that the
inherent relationship between timestamps should be considered by making the
parameters at timestamp ¢ dependent on those at ¢t — 1 as in [3, 14, 11]. In this
paper, we take a different approach and assume that the probability of word w
in topic k at timestamp t is derived from the omni-temporal probability of word
w in topic k, not from the corresponding probability at timestamp ¢ — 1.

This paper provides another contribution aside from the utilization of docu-
ment timestamps in SAGE. We provide a new approximated inference applicable
to any version of SAGE. This revised inference uses Newton-Raphson method
only in the single variable case, as well as avoiding using Hessian matrices. Con-
sequently, we need no calls of quasi-Newton method like L-BFGS and can make
implementation far easier. In sum, the contributions of this paper are 1) to pro-
vide a novel application of SAGE standing on its own merit and 2) to devise a
new inference for SAGE that makes parameter updates easier to implement.

In the evaluation experiment, we first compare ChronoSAGE and vanilla
SAGE with LDA with respect to their basic competence in topic modeling. While
perplexity is widely used as an evaluation measure for topic models, we adopt
an external evaluation measure, called pointwise mutual information (PMI) [10],
to achieve a realistic evaluation. PMI is calculated by using the entire English
Wikipedia that was downloaded on June 6, 2013 and contains 7,298,899 entries.



Table 1. Definition of symbols.

zq; € W|the word observed as the ith token of document d
zdi € K |the latent topic to which the ith token of document d is assigned
yq € T |the observed timestamp of document d

ng the number of word tokens appearing in document d
Ny the frequency of word w in the entire document set
m.,, |the background parameter for word w
n’(fli'; the parameter for word w with respect to topic k

2

Niw the parameter for word w with respect to timestamp ¢

Ny, |the parameter for word w with respect to the pair of timestamp ¢ and topic k
¢ikw |the probability that w expresses topic k in the document having timestamp ¢.

the variance of the Gaussian distribution generating 77(?,
Tow the variance of the Gaussian distribution generating nfﬁ?
T,pw | the variance of the Gaussian distribution generating nizzu

Oark the probability that a word token in document d represents topic k

The size of our reference corpus is enough to make our evaluation reliable. The
result will show that both ChronoSAGE and vanilla SAGE can give a better
PMI than LDA. Further, we present time-dependent word lists extracted by
ChronoSAGE and discuss them from a qualitative view point. The discussion
illustrates that ChronoSAGE can diversify topic modeling results chronologically
without harming the basic competence vanilla SAGE has as a topic model.
The rest of the paper is organized as follows. Section 2 describes the model
structure of ChronoSAGE and its variational inference. Section 3 presents the
results of evaluation experiment. Section 4 reviews existing approaches. Section 5
concludes the paper with a summary and a discussion on future work.

2 ChronoSAGE

ChronoSAGE is an application of the multifaceted SAGE for utilizing document
timestamps. However, our description of ChronoSAGE is more than a simple
repetition of that given in [5]. ChronoSAGE has its own application-dependent
characteristics and further is equipped with a new approximated inference.

2.1 Generative description

In this paper, we identify documents, words, topics, and timestamps with its

index number. D = {1, ..., D} is the set of documents, W = {1, ..., W} is the set

of different words, K = {1, ..., K} is the set of latent topics, and T = {1,...,T}

is the set of document timestamps. Table 1 contains the definition of symbols.
ChronoSAGE generates documents as follows.

— With respect to each word w € W, draw parameters 7',5710) for each k € IC,
Tt(i) for each t € T, and Tt(]ji) for each pair (¢,k) € T x K from the improper
Jeffrey’s prior distribution p(7) o 1/7. These are variance parameters. We
adopt the Jeffrey’s prior to reduce the number of free parameters.

— With respect to each w € W, draw parameters 77,(;2, n,g,i), and ngzzv as follows:



1)

e For each k, draw 7., from the zero-mean Gaussian distribution A(0, T]il))

w)-
e For each t, draw nt(i)) from the zero-mean Gaussian N (0, Tt(i)).
e For each pair (t, k), draw nt(zzu from the zero-mean Gaussian N (0, Tt(li)u)
— Obtain the probability ¢;r., that word w is used to express topic k in the

documents having timestamp ¢ as follows:

(1) (2) (3)

¢ = eXp(m'w + Mew + MNtw + T]tku)) (1)
thw = W, @, 6"

Zv exp(mv + nkv + ure + ntkv)
— For each document d € D, draw a multinomial parameter 84 = (041, . . ., 0ix)

from the symmetric Dirichlet prior Dirichlet(«). Further,
e For the ith word token of document d, draw a latent topic zy; from
the multinomial distribution Multi(64) and draw a word z4; from the

multinomial Multi(¢, . .) as the ith token of document d.

The important feature of ChronoSAGE is that each word probability ¢, is
obtained by combining the four parameters: m,,,, 77,22, nt(?u), and nfizu In vanilla
SAGE, we set ¢pq o< exp(my, + 1k ) and use no time-specific word probabilities.

The role played by each parameter in ChronoSAGE is explained below.

— my, is equivalent to the log of the background probability of word w, because
it depends neither on topic k nor on timestamp ¢. While m,, is treated as a
constant in [5], we update m,, in the inference as will be shown later.

— 77,&2 represents the dependency of the probability of word w on topic k. This
parameter reflects one of the key ideas in topic modeling, i.e., an idea that
different word probability distributions correspond to different topics.

— nfi) represents the dependency of the probability of word w on timestamp
t. This parameter is introduced to find the words showing a non-informative
time-dependency. Table 2 gives an example of top 10 words sorted by their
77,&2”) for each timestamp ¢. This example is obtained from a topic modeling
result of ChronoSAGE for TDT4, which is one among the three document
sets used in our experiment. In TDT4 document set, we give the same times-
tamp to the documents belonging to the same range of seven days (e.g. from
December 14 to 20, 2000). Table 2 shows that, for almost all timestamps, top
seven words are the dates falling in the corresponding range of seven days.
77;2”) is introduced to remove this type of trivial dependency on timestamps.

— niz)w is the most important, because we devise ChronoSAGE to diversify

topic modeling results chronologically. nt(,iiv represents a time-dependent dis-

placement from 771(;,3 This type of parameter tells how topic-specific word

probabilities are diversified according to document timestamps. We will later
(3)

tkw?
time-dependency do not appear owing to the introduction of 7

give examples of word lists sorted by 7 where the words having trivial

(2)

tw

We believe that the discussion above will prove the uniqueness of our ap-
proach. While we introduce no modification into the model structure of the
multifaceted SAGE proposed in [5], our application of it for chronological topic
analysis stands on its own application-dependent merit.



2.2 Variational lower bound

Based on the generative description of ChronoSAGE in Section 2.1, we obtain
the following full joint distribution:
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where §(-) is 1 if the condition in the parentheses is true and is 0 otherwise.

With respect to (1), n®, and n®), we optimize them directly. With respect
to the other parameters, we obtain their posteriors by a variational inference.
Let q(z,T(l),‘r(z),‘r(s),B) denote a variational posterior. We assume that this
posterior is factorized as q(z)q(T7™)q(T7)q(7(3))q(@) and obtain a lower bound
of the log of the marginal probability distribution p(z,n™™, 73, n®|m, a) by
using Jensen’s inequality as follows:

np(z, M, 0@, n®|m, )

> [a(r®)pn i 0)art) — Dig(r ) | p(r V)
+ [ atr®) npm®lr@)ir® - Dig(r®) | p(r)
+ [ O (e 9)ar® — Dlg(r®) | p(r )

/Zq z)Inp(z|0) d0+z YInp(x|m, z ;M n®, (3))
+/q(0)1np(0\a)d9—/q(9) In ¢(0)do — Zq )Ing(2 (3)

where Dig(7) || p(7)] = [q(r)Ing(r)dT — [q(7)Inp(7)dr, ie., Kullback-
Leibler divergence. We further assume the followings for the posteriors:

— q(7W) is factorized as [], w q(T,gw)) Each q(Tkw) is a Gamma distribution

Gamma(akw, b,(clw) We assume the same for ¢(7(?)) and ¢(7®)).
— ¢(0) is factorized as [ [ ; ¢(04). Each q(84) is a Dirichlet distribution Dirichlet(¢ ).
— q(z) is factorized as [ [, ; ¢(zdi)- z4i is drawn from a multinomial distribution
Multi(Ag;), where gy is a variational probability that z4 = k holds.



Table 2. Top 10 words sorted by their 7:,, for each ¢ in case of TDT4.

t = 0 |edt paralymp lebanon 32nd wild-card u.s china russia join carter’s
t = 1 |kippur 10-13 lebanon china palestinian text join iran parti dynamit
t =2]10-14 10-16 10-18 10-15 10-19 10-17 10-20 sharm lebanon edt
t = 3]10-24 10-23 10-22 10-25 10-21 10-26 10-27 lebanon china octob
t =4 |10-29 10-28 10-31 10-30 11-3 leipzig lebanon stump join 11-1
t=25|11-10 11-8 11-9 11-6 11-7 11-5 convuls 11-4 russia clinton
t=6]11-17 11-16 11-11 11-14 11-15 11-12 11-13 anchorag china russia
t= 11-18 11-19 11-24 11-22 11-23 11-20 11-21 930-vote china taint
t =8 |11-25 11-27 11-28 11-26 11-30 11-29 seclus join novemb bush
t =19 |12-8 12-6 12-5 12-7 12-3 537-vote 12-4 russia parti novemb
t =10|12-12 12-15 12-14 12-10 12-13 12-11 12-9 decemb join novemb
2-20
2-23
5

t =12|12-24 12-28 12-2 12-27 12-26 12-25 alcoa jiri holidai

7
41
t=11|12-17 12-18 12-21 1 12-19 12-22 12-16 ronni veneman china
91
1-5 vy 12-0 free-agent lighten 31st 1-4

t = 13|309 tabasco 2001
t = 14|presid-elect’s 1-1
t =15|1-14 1-13 1-1
t =16|1-21 1-26 1-2
t=17|1-28 1-31 1-3

2 1-8 1-11 1-9 1-10 1-7 70-year-old u.s tycoon
18 1-17 1-16 1-15 rosa 560 lyle

22 1-20 1-23 1-24 hanun faizabad taba

27 1-29 dawosi bhuj fasa greenspan’s 960

91
5 1-
01

2.3 Parameter updates

We denote the right hand side of Eq. (3) as £ for short. By maximizing £ with
respect to each parameter, we obtain a formula for updating the parameter.
The terms related to topic assignments z in £ can be rewritten as follows:

=) Xain{¥(Car) - Z Car) }
d,i,k

( ) (2) (3)
exp(Mazy; + My + Mygwas + =
+ Z Adik In P + sy M + My )

Z )\dzk In )\dzk ) (4)
dyik > w eXp(my + Wl(cl) + Uz(/i)w + m(;dkw) dyik

where ¥(+) is digamma function. Ay is a variational posterior probability that
the ith word token in document d is assigned to topic k. (4 is a variational
Dirichlet posterior parameter of topic k£ in document d. By maximizing L, with
respect to Agik, we obtain the following update for Ag:

1 2 3
Z R } eXP(mwdi + U;ix)m + nl(ld?”ﬂdi + Uéd)zmd,;)
dk

3 XD (M + 1 + D + 715 k)

Adik < GXP{ (Car) — (5)

We rewrite the terms related to per-document topic distributions 0 in £ as:

=> /\dzk{ (Car) — ZCdk } Z(ak - Cdk){ (Car) — ZCdk }

d,ik

+ Zlog F(Z ag) — Zlog I'(ag) — Zlogf(z Cak) + Zlog I'(Car)- (6)
d k d,k d k d,k

By solving 0Lg/0(ar = 0, we obtain an update as (gx = ap + ngx, where we
define ngr, = Y, Agir- The derivation is the same as that of the vanilla LDA [4].



The terms related to variance parameters 7(!) in £ can be rewritten as:

b(l)(n w) 1 1 1
L) =3 {- T (ol + 5 )P (aft)
k,w Aoy

-1
b,
i 2kw ta (1) b lnF(ai(w),)} + const. (7)
By solving dL(7(M)) /074, = 0, we obtain the following updates for a( ) and b(lu)):
1), (1 1 _ 1 1

M LMy 2521,3(77;(“3) (a’l(eu)J )72 - (ang 1)Ll7’(a§w))) +1 (8)

A 5 Oy 1)/, (g, (1) -3 1( (1) (1) (1)

bkw (nkw) (akw ) +v (akw) + (akw §)W (akw)
1 1 1

b+ (afoy = D(4a)) ™ (9)

Similar updates can also be obtained for 7(2) and 7(3). Eq. (9) will be useful in

the discussion below when we eliminate a( ) and bfclu), from parameter updates.
We estimate n1), n(®, and n® by maxnnizing L directly. A function to be
maximized with respect to 7 is:

(1)) = anwm&z - Zntk In { ZeXp(mw + 77;(C ) + 77t(2) + nEi’L)}

b ()
2ag,y — 1)

where we define ng,, =3, Z{mdi:w} Aaie and ng = Z{d:yd:t} > Adik-
Here we propose a new approximation to avoid inverting Hessian matrices (cf.
Section 3.1 of [5]) and thus to make variational inferences far easier to implement.
Our approximation is based on the observation that the log function satisfies
lnx < £ £ 1+1In¢ for any € > 0. This observation is also used by [2] in a different
situation. By introducing an auxiliary variable & for each pair of timestamp ¢
and latent topic k, we obtain a lower bound of Eq. (10) as follows:

(1) (2

+ const., (10)

) (3)
n') > anwnkw Zn w P + My + ey + Thj)
i
(Moa)?
— Ny In &g — — kW7 1 const. (11)
2 2 ) )

We denote this lower bound as l(n(l)) and maximize it in place of L(n™)). The

first and the second derivatives of {(n")) with respect to 77,(53 are obtained as:

U)ol ek oSO ) ) Tk

ol ; &tk (a&)} )

kw
3
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Table 3. Specifications of the three document sets used in the experiment.

D: # documents|W: # words|T: # timestamps|average document length
DBLP 2,093,913 10,694 22 5.2
NSF 128,181 19,066 13 95.9
TDT4 96,246 15,153 18 156.6

Further, we use Eq. (9) to eliminate agu)) and b,(cg and obtain a Newton-Raphson

update of 771(@2 as follows:

Nkw — Ckwen’”" 2 — 77(11);
a4 L 31() o) =
Ckwenkw( ) +1

(13)

(

where we define C},,, = Zt ntk exp(mw +1; o)

w) 1)/ ek - A similar simple update
can be obtained also for 77 ) and 77 . While m,, is kept as a constant in the
original paper of SAGE [5], we update m,, by maximizing £. The relevant terms
in £ can be rewritten as:

(1) (2) (3) )

w0 OXP(May + N + M +
t

(14)

Let I(m) denote the right hand side of Eq. (14). By solving dl(m)/dmy = 0, we
obtain an update of m,, as:

T

2
Zt,k Nk eXP(U;(ﬂg + nt(w) + ntkw)/étk

My < In (15)

We update m,, also for vanilla SAGE by m,, < In in the exper-

Ty
> i exp(ng,)) /€
iment. By differentiating the lower bound achieved by our new approximation
with respect to &, we obtain the following update: &y < >, exp (mw + 7712113 +
ngj) + nt(,i’zv) For the Dirichlet hyperparameter «, we used a fixed value 50/ K,

because its optimization gave no substantial difference in evaluation results.

3 Evaluation experiment

We perform an evaluation of ChronoSAGE in two phases. Firstly, we com-
pare ChronoSAGE and vanilla SAGE with LDA. This comparison will reveal
that ChronoSAGE has almost the same topic modeling competence with vanilla
SAGE and that ChronoSAGE and vanilla SAGE are superior to LDA. Sec-
ondly, we give examples of timestamped word lists extracted by ChronoSAGE
and discuss them from a qualitative viewpoint. This discussion will reveal that
ChronoSAGE successfully diversify topic modeling results chronologically. Be-
fore giving the results of evaluation, we describe experiment settings in detail.
We used three document sets, called DBLP, NSF, and TDT4, whose spec-
ifications are summarized in Table 3. DBLP is a set of paper titles in DBLP



computer science bibliography, available at its Web site'. We used a version of
dblp.xml downloaded on June 11, 2013. We removed all records whose publica-
tion year was 2013, because the number of such records was small. We regarded
paper title as document and publication year as document timestamp. NSF is
a set of research awards abstracts available at the UCI machine learning repos-
itory?. Also in this document set, we regarded publication year as timestamp.
TDT4 is a corpus for the TDT4 topic detection and tracking evaluation by
LDC3. In TDT4, we gave the same timestamp to the documents belonging to
the same chronological range of seven days (e.g. from December 14 to 20, 2000)*.
We preprocessed each document set by a series of standard procedures. How-
ever, stemming was not applied to DBLP, because paper titles were short, and
therefore word forms were thought to play an important role.

We ran the variational inference presented in Section 2 on each document
set. The inference for vanilla SAGE was achieved by ignoring time-dependent
parameters in the inference for ChronoSAGE. Before staring an instance of the
inference, we conducted 500 iterations of collapsed Gibbs sampling (CGS) for

LDA [6] and initialized n,(cgs based on the topic assignment result as ln p(wlk) —

M., where p(w|k) is the probability of word w within topic k. n,gi)s and ngzzus

were initialized to 1. After 500 iterations of CGS, we ran 100 iterations of the
variational inference. We confirmed that this number of iterations was enough
by inspecting the change in the variational lower bound. With respect to K,
we tested the following two settings: K = 100 and K = 300. For each of the
compared approaches, i.e, LDA, vanilla SAGE, and ChronoSAGE, and for each
setting of K, we ran the variational inference ten times starting from a random
initialization of topic assignments in CGS. Consequently, we obtained ten topic
modeling results for each compared approach and for each setting of K.

3.1 Comparison using external measure

While perplexity is often used for an evaluation of topic models, we adopted an
external measure, called pointwise mutual information (PMI) [10], for a more
realistic evaluation. We did not use coherence measure [9], because this measure
is likely to give a worse result for a larger number of topics, as we can observe
in Figure 6 of [1], and thus makes the comparison between different K difficult.
We used the entire English Wikipedia, which was downloaded on June 6, 2013
and contains 7,298,899 entries, as the reference corpus for PMI.

The evaluation was done as follows. We selected top 10 words (w1, ..., w1p)

sorted by n,(cg for each k and calculated PMI for all pairs of words as PMI(w;, w;) =

In %, for i,5 € {1,...,10}. The probability p(w;) is defined as R;/R,
! http://dblp.uni-trier.de/xml/
2 http://archive.ics.uci.edu/ml/
3 http://projects.ldc.upenn.edu/TDT4/
4 We make the first range contain from December 1 to 6, 2000 and the last one contain
from January 27 to 31, 2001 so that the sizes of these two ranges, placed at both
ends of the whole period, are as equal as possible.



% ChronoSAGE 100 PO X ChronoSAGE 100 2K % ChronoSAGE 100 MHOK

X vanilla SAGE 100 2K X vanilla SAGE 100 XU X X vanilla SAGE 100 MK
 LDA 100 OB % LDA 100 SN  LDA 100 MK

X ChronoSAGE 300 XK X ChronoSAGE 300 S X ChronoSAGE 300 MK

> vanilla SAGE 300 M | X vanilla SAGE 300 b3 > vanilla SAGE 300 MWK
 LDA 300 < X LDA 300 MK  LDA 300 x®

1.62 1.72 1.82 1.92 1.62 172 1.82 192 1.62 1.72 1.82 192

Fig. 1. Comparing ChronoSAGE with vanilla SAGE and LDA in PMI on DBLP (left),
NSF (center), and TDT4 (right).

where R; is the number of documents containing w; in the reference corpus, and
R is the size of the reference corpus. The co-occurrence probability p(w;,w;) is
defined as R;;/R, where R;; is the number of documents containing both w; and
w; in the reference corpus. We compared the three approaches by the median of
all calculated PMIs. A larger median is better.

Fig. 1 summarizes the evaluation. Ten medians obtained from the ten dif-
ferent instances of the inference, each starting from a random initialization of
topic assignments in CGS, are plotted for each approach and for each K. The
horizontal axis represents the magnitude of PMI. As Fig. 1 shows, ChronoSAGE
gave almost the same medians as vanilla SAGE. Further, both methods worked
better than LDA for both NSF and TDT4 and at least gave a result compara-
ble with LDA for DBLP. Therefore, it can be concluded that SAGE-type topic
modeling is a better choice than LDA in terms of PMI.

3.2 Timestamped word lists

Next, we give an example of timestamped word lists obtained by ChronoSAGE in
Fig. 2. We obtained this example from one among the ten results ChronoSAGE
gave for DBLP when K = 300. The two panels in Fig. 2 correspond to two
among 300 topics. The left and the right panel give word lists seemingly related
to mobile communications and to video coding, respectively. On the top of each
panel, top 15 words are enumerated based on 77;(:“2 These words represent the
omni-temporal content of the corresponding latent topic. The size of an ellipse

behind each word indicates the magnitude of 771(613, Below these top 15 words,

we present top 10 words for each timestamp based on nt(gzu. The size of a circle

behind each timestamp indicates the largest nizzu for each t.

On the left panel in Fig. 2, we can read out a clear trend transition. For
example, the word GSM, mainly related to 2G networks, appears in the word
lists of earlier years. The word GPRS comes after it and appears in the lists of
2001 and 2002. The word LTFE appears only in the lists of recent years. While we
do not explicitly model the inherent relationships between timestamps, we can
observe such a clear trend. The right panel provides an interesting observation.
For example, the word HDT'V cannot be found in the word lists after 1995. This
may be because HDTV had already become a part of consumer technologies

at that time. MPEG-2 and MPFEG-/ are found in the lists of late 90’s and



mobile mobility scheme communicationslogation coding video compression  optimized h.264/avc
vertical handover wireless ipv6 handoff lossless joint h264 loss) encoding

heterogeneous seamless in 39 wimax made transmission  encoder transcoding  pragressive
2012 limitation location-aware  heterogenous interconnecting address 2012 high-efficiency distortion  prediction  mpeg4 mode
clients Vehicular roadband  wimax enhanced heve h26djave | multiview 2000 Physicatlayer
2011 downstream  heterogeneous ~address imax broadband 2011 2600 heve distortion ha26djave " prediction
enhanced  Ite mechanism 39 Vehicular mode multiview 264 physical-ayer © high-qualty
2010 interconnecting wimax broadband  heterogeneous ~vehicular 2010 2000 quantizers prediction h26djave  h26d
ite enhanced mechanism | route it mode distortion© high-quality  hd wynerziv
2000 heterogeneous wimax broadband enhanced  mechanism 2009 pixel objectbased  h26ajave  h26d multi-view
ngn e proxy route 59 mode wynerziv 2000 Skip hd
2008 telemetry wimax g heterogeneous ~enhanced 2008 enumerative distortion  R2sdjave  h26d prediction
mechanism  vehicular | ims proxy sip 2000 mutiview  mode Standarg wyneraiv
2007 el heterogeneous Wil wimax mechanism 2007 luminance 2000 prediction K264 h264/avc
ngn 39 ‘wian s next-generation mutiview  mode Standard wynerzv  coding
2006 location-aware heterogeneous enhanced  mechanism  cma2000 2006 pixel objectbased  h26djave 2000 h264
30 wian vehicular v next-generation multiview  mode standard prediction  wynerziv
2005 fovi-atency location-aware address celiular cierts 2005 2000 7264 haedjave high-quaiity  mode
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Fig. 2. Timestamped word lists extracted by ChronoSAGE from DBLP. The left and
the right panels correspond to different latent topics seemingly related to mobile com-
munications and to video coding, respectively.

early 2000’s. H.264 comes after them, and HEVC appears in the lists of very
recent years. It can be concluded that ChronoSAGE extracts clear trends by
diversifying topic modeling chronologically with document timestamps.

4 Existing approaches

Among existing approaches, the structural topic model (STM) [13] is closest
to ChronoSAGE in its use of the multifaceted SAGE. The authors make word
probabilities proportional to an exponential of the sum of the four parameters (cf.
Eq. (9) in [13]) so that word use within a topic varies by multiple factors. This is
also an application of the multifaceted SAGE and is similar to ours in this sense.
However, the authors consider covariates, e.g. gender or political ideology, as
the factors diversifying word probabilities. On the other hand, we use document
timestamps to diversify word probabilities and clarify an application-dependent
merit of ChronoSAGE through our experiment.

The dynamic topic model (DTM) [3] has time-dependent word probabilities
that can be written as ¢ = exp(nizzu)/ Yo exp(nt(,z’zj) by using our symbols.
However, as is discussed in Section 2.1, it is important for us to remove a trivial
time-dependency from each word probability ¢ur., by introducing a parameter
77753)) that is dependent only on timestamp ¢ and not on any latent topics. This
technical aspect differentiates ChronoSAGE from DTM.



Factorial LDA [8] has a similar flavor to SAGE, because an exponential of
the sum of multiple parameters is used to vary word probabilities. However,
the exponential is used to describe not word probabilities themselves, but hy-
perparameters of Dirichlet prior distributions that generate word probability
distributions. Consequently, the inference requires the multivariate gradient as-
cent for optimizing the parameters. In contrast, our approximated inference only
uses the Newton-Raphson method in the single variable case and makes the im-
plementation easier.

5 Conclusions

In this paper, we proposed ChronoSAGE, a novel application of the multifaceted
SAGE standing on its own merit. As the results of evaluation experiment re-
vealed, ChronoSAGE has the same competence with vanilla SAGE in topic
modeling and, however, can extract informative timestamped word lists, which
cannot be obtained by vanilla SAGE. Further, we devised a new approximated
inference using the Newton-Raphson method only in the single variable case. Our
important future work is to explicitly model the inherent dependency among the
timestamps by e.g. using Gaussian processes [12].
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