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Abstract

We introduce a new stereo formulation which does not

use pixel and disparity models. Many problems in vision are

treated as assigning each pixel a label. Disparities are la-

bels for stereo. Such pixel-labeling problems are naturally

represented in terms of energy minimization, where the en-

ergy function has two terms: one term penalizes solutions

that inconsistent with the observed data, the other term en-

forces spatial smoothness. Graph cuts are one of the effi-

cient methods for solving energy minimization. However,

exact minimization of multi labeling problems can be per-

formed by graph cuts only for the case with convex smooth-

ness terms. In pixel-disparity formulation, convex smooth-

ness terms do not generate well reconstructed 3D results.

Thus, truncated linear or quadratic smoothness terms, etc.

are used, where approximate energy minimization is neces-

sary. In this paper, we introduce a new site-labeling for-

mulation, where the sites are not pixels but lines in 3D

space, labels are not disparities but depth numbers. For

this formulation, visibility reasoning is naturally included

in the energy function. In addition, this formulation allows

us to use a small smoothness term, which does not affect

the 3D results much. This makes the optimization step very

simple, so we could develop an approximation method for

graph cut itself (not for energy minimization) and a high

performance GPU graph cut program. For Tsukuba stereo

pair in Middlebury data set, we got the result in 5ms using

GTX1080GPU, 19ms using GTX660GPU.

1. Introduction

If we define stereo as a pixel disparity labeling problem,

this labeling becomes very difficult, since disparities tend

to be piecewise smooth. They vary smoothly on the sur-

face of an object, but change dramatically at object bound-

aries. Therefore discontinuity preserving property is nec-

essary. The goal is to find a labeling f where f is both

piecewise smooth and consistent with the observed data.

This problem can be naturally formulated in terms of en-

ergy minimization. We seek the labeling f that minimizes

the energy

E(f) = Edata(f) + Esmooth(f),

where Edata shows an energy corresponding to how the la-

beling f consists with the observed data, while Esmooth

evaluates the smoothness of f . The choice of Esmooth is

a critical issue and many different functions have been pro-

posed [1, 3, 15]. Also, this choice requires different opti-

mization methods [4, 5, 9, 16]. Many basic methods for

stereo use scalar(1D) disparity labels. Such methods often

implicitly assume front-parallel planes. For example, stan-

dard piecewise smooth(e.g. truncated linear or quadratic)

pairwise regularization potentials assign higher cost to sur-

face with larger tilt. To model surfaces more accurately

Birchfield and Tomasi [2] introduced 3D-labels correspond-

ing to arbitrary 3D planes, but this approach is limited to

piecewise planar scenes. Woodford et al. [18] retain the

scalar disparity labels while using triple-cliques to penalize

2nd derivatives of the reconstructed surface. This encour-

ages near planar smooth disparity maps. The optimization

problem is however made substantially more difficult due to

the introduction of non-submodular triple interactions. Fur-

thermore, volumetric graph cuts [17] and 3D-label energy

model [14] have been proposed.

In this paper we discard pixel-disparity model which

does not treat left and right image symmetrically. We treat

left and right image symmetrically and introduce a novel

concept of gaze lines, which are auxiliary lines defined on

the cross points of rays corresponding to left and right im-

age pixels. In our formulations, sites are gaze lines and la-

bels are depth numbers. For this simple formulation, visi-

bility reasoning is naturally included in the energy function,

and a small smoothness term does not damage the 3D re-

sults much. Therefore, we use convex function for smooth-

ness and visibility terms. This encourages exact optimiza-

tion by graph cuts [10, 13]. Our graph structure is some

what similar to those of [11].
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Figure 1. Conventional pixel disparity model.

2. Energy model

We define a first-order priors site-labeling problem as

follows. This assigns every site v a label, which we write

as Xv . The collection of all site-label assignments is de-

noted by X . The set of all site v is denoted by V , so

v ∈ V . The set of all label l is denote by L, so Xv ∈ L.

The number of sites is n, and the number of labels is m.

First order priors are defined on two-sites neighborhoods

(u, v) ∈ E ⊂ V × V . Here E denotes the set of all neigh-

boring sites pairs. The energy function E(X) is

E(X) =
∑

v∈V

gv(Xv) +
∑

(u,v)∈E

huv(Xu, Xv),

where gv(Xv) is called data term which penalizes solu-

tions that are inconsistent with the observed data, and

huv(Xu, Xv) is pairwise potential (i.e. interaction cost),

which includes smoothness energy and visibility reasoning

energy [18, 12]. We use the standard 4-connected neigh-

borhood system. If the labels have a linear ordering and the

interaction cost is an arbitrary convex function, the problem

can be solved exactly with graph cuts [10]. These condi-

tions are represented as

L = {l0, . . . , lm−1}

and

huv(li, lj) = h̃uv(i− j)

that is, labels form a line, and if

h̃uv(i+ 1)− 2h̃uv(i) + h̃uv(i− 1) ≥ 0, (1)

then interaction cost becomes convex function.

3. New site and label

Figure 1 shows the conventional pixel-disparity labeling,

where pixels are sites and disparities are labels. Figure 2

shows ‘cross points’ of rays correspond to left and right im-

age pixels and ‘gaze lines’ which connect some of the cross

points. We denote a coordinate of a left pixel as (xl, yl),
a right pixel as (xr , yr), here xl, xr ∈ {0, 1, 2, . . . , w −
1}, yl, yr ∈ {0, 1, 2, . . . , h − 1}. The (w, h) is image

2D size. A cross point is represented as (xl, xr, y) ∈
{((xl, yl), (xr , yr))|y = yl = yr}. A gaze lines is repre-

sented as (g, y) ∈ {(xl, xr, y)|xr+xl = w−1+2g}, where

g is an integer and −w/2 < g < w/2. A depth line is rep-

resented as (d, y) ∈ {(xl, xr , y)|xr−xl = −(w−1)+2d},

where d is an integer and 0 ≤ d < w/2. We call d a

depth number. A cross point (xl, xr, y) is also represented

as (g, d, y) by using g and d. These gaze lines form sites

and depth numbers become labels.

Next we consider three cases (Figure 2). We can assign

1. the same depth numbers,

2. two depth numbers differ by one,

3. two depth numbers differ by more than one

between two neighboring sites. Assigning the same depth

numbers means a front parallel plane, as same as in pixel-

disparity model. Assigning depth numbers differ by one

means that the two cross points are on the same ray of the

right or left camera. Assigning depth numbers differ by

more than one means that the cross point in the back is in-

visible, since it is behind some front object (Figure 3). That

is, assigning labels differ by more than one to neighbor-

ing sites is inhibited in our site-labeling. Therefore, we can

write

h̃uv(i−j) = h̃1×|i−j|+h̃2×(|i−j|−1)×T (|i−j|> 1).

Here, i and j are depth numbers, T (b) becomes 1 if b is

true, otherwise 0, h̃1 and h̃2 are constant values, and h̃2 is

infinity (actually enough big integer). We call h̃1 ‘penalty’

for smoothness, h̃2 ‘inhibit’ for visibility. This h̃uv(i − j)
satisfies Equation 1. Therefore two-sites neighboring terms

become a convex function. So, we can minimize the energy

by simple graph cuts. This energy function is easily mapped

to the graph structure illustrated in Figure 4.

It is worthwhile noticing that Potts or truncated model

is unnecessary, since any disparities change along a ray in-

creases only once h̃1 energy per each neighboring sites pair.

It is also important that the inhibit term rejects the solutions

with occlusions. In our model, invisible positions are inher-

ently removed from the beginning. We do not seek discon-

tinuous surface, but seek continuous surface. For dashed

parts in Figure 5, we cannot know whether some objects

surfaces exist or not from the only one stereo view.

Furthermore, we can think that this problem is not a sites

labeling problem, but a real cross points finding problem

from all cross points. Real cross points make a surface in

3D space. Graph cuts divide 3D space into two pieces by

this surface. We will use the term ‘real cross point’ later.

2



right cameraleft camera

gaze line

depth line

ray

cross point depth numbers differ by 1

depth numbers differ by 2

same depth numbers
case 1.

case 2.

case 3.

Figure 2. Our new ‘gaze line’ ‘depth number’ model. Gaze lines start the center of both eyes, i.e. right and left cameras. We think that I

am in the center of both eyes. This figure also illustrates ‘cross points’. The ‘real cross points’ exist on the object surface.

Figure 3. The posterior ‘cross point’ is behind some front object.
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4. Experiments

4.1. Relation between disparitymodel and gazeline
model

We use Tsukuba stereo pair (left: scene1.row3.col1.ppm,

right: scene1.row3.col3.ppm, 384 × 288 pixels) and its

ground truth (truedisp.row3.col3.pgm, disparity = 10 . . .28
pixels) in Middlebury data set. We introduce the integer co-

ordinates (W,H, S) for cross points (g, d, y) for simplicity.

W is the horizontal axis which has the left to right direction.

H is the vertical axis which has the up to down direction.

S is the depth axis which has the front to back direction.

(W,H, S) and (g, d, y) are related as

W = g + offset1

H = y + offset2

S = d+ offset3.

Then we denote a pixel in right image as (x, y), and its

disparity as dis. The relation between (W,H, S) and

(x, y, dis) is written as follows,

W = x− (lwoffset + rwoffset)/2 + dis/2

H = y − hoffset

S = (lwoffset − rwoffset)/2− dis/2

and

x = rwoffset + S +W

y = hoffset +H

dis = lwoffset − rwoffset − 2S.

Where, offset1, offset2, offset3, lwoffset, rwoffset, hoffset define

the center of cuboid area, but we omit details here. If dis
changes 2, then S changes 1. Therefore in our model the

half of pixels are unused. This is the weak point of our new

site-labeling formulation. However, since the pixel density

of CMOS camera is increasing year by year, we think this

is not significant. Using this relation, we can translate each

other between ground truth cross points and ground truth

disparities. In dividing-by-2 operations in the above equa-

tions, we round away to get integer values.

4.2. Error count

For evaluation we define an ‘error’ as follows,

error =
∑

s∈all sites

d(s) =
∑

d=0

d× the number of such sites.

(2)

Here, d(s) means difference between the truth depth num-

ber and the estimated depth number at site s.

d number of such sites percentage

0 76502 92%

1 3766 4%

2 839 1%

3 547 0%

4 98 0%

5 82 0%

6 146 0%

7 46 0%

8 36 0%

9 245 0%

10∼ 0 0%

error 11578

Table 1. Breakdown of the error (Equation 2) at inhibit=1023,

penalty=14. d indicates the differences to ground truth.

4.3. Graph cuts using our model

We use a cuboid area which includes 372×288×24 cross

points for Tsukuba stereo pair. This cuboid cross points are

mapped to a graph with 372 × 288 × 23 + 2 = 2464130
nodes and 19430137 edges. We use a simple sum of abso-

lute difference data term as

gv(Xv) = |LR −RR|+ |LG −RG|+ |LB −RB |,

where, Xv means the cross point (g, d, y) = (xl, xr, y) in

our model, therefore, (LR, LG, LB) is color of left pixel

(xl, y), (RR, RG, RB) is color of right pixel (xr, y). The

color intensity is from 0 to 255. So, gv(Xv) varies from

0 to 765. We use 1023 for the inhibit constant (h̃2). 1023

is enough big, since increasing the inhibit constant did not

increase max flow in our experiments. We do not know

the theoretical reason to get the best penalty constant value

(h̃1). We sought it by experiments. Figure 6 indicates 14

is experimentally the best. At this value the error becomes

11578. Table 1 shows details of this case. The 92% of

sites are equal to the ground truth. Figure 7 is the result

disparity image of our stereo formulation with h̃1 = 14,

h̃2 = 1023. Figure 6 also indicates the difference between

with the inhibit constant and without it.

4.4. GPU graph cuts

This graph is successfully cut by BK Max-flow/min-

cut code (maxflow-v3.01.zip at vision.csd.uwo.ca/code). It

takes 3823ms at Corei7-5930K 3.5GHz CPU (Table 2). It is

so slow for real time use that we have developed high speed

GPU graph cuts codes. We have adopted the ‘push relabel’

algorithm with global label update [8, 6, 7]. The follow-

ing is our graph cut function described in CUDA (Com-

pute Unified Device Architecture) for NVIDIA GPUs. Be-

fore calling this function, the ‘data’s from/to the special

node S/T are translated to the positive/negative overflows
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Figure 4. The graph structure representing the energy function. Left portion indicates ‘gaze lines’ and ‘depth numbers’, i.e. ‘cross points’,

right portion indicates a corresponding graph structure. ‘Cross points’ correspond to the edges of the graph. This figure shows only one

epipolar slice. Actual graph is three dimensional.

of nodes, while the ‘data’s between normal nodes are set to

the edges.

void graph_cut(void) {

int d;

wave_init<<< grid, block >>>();

for (int time = 1; time < A; time++)

wave<<< grid, block >>>(time);

for ( ; ; ) { // push relabel loop

bfs_init<<< grid, block >>>();

for ( ; ; ) {

bfs_i<<< grid, block >>>();

d = 0;

bfs_o<<< grid, block >>>(d);

if (d == 0) break;

}

ovf<<< grid, block >>>(d);

if (d == 0) break;

for (int i = 0; i < B; i++)

push_relabel<<< grid, block >>>();

}

}

Where, grid × block = 372 × 288 × 23 = 2464128 and

<<< >>> indicates threads invoking. Accordingly, 2464128 cuda

cores in a GPU are invoked at once. Before the push relabel loop,

we add the ‘wave front fetch’ operation which we have developed

originally. This increases the graph cut speed twice, but we omit

details here. It takes 122ms at GTX1080 GPU (Table 2). It is still

slow for real time use.

4.5. Approximate graph cuts

In order to reduce the processing time, we have developed the

hierarchical graph cuts which consist of two steps. In the first step,

2 × 2 × 2 or 3 × 3 × 3 neighboring cross points are combined into

one delegate point. The first graph cut determines which delegate

points include real cross points. The second graph cut finds real

cross points from the all cross points which are included in a thin

skin 3D area. We denote this procedure as level 1 approximation.

In the expression 2 × 2 × 2 or 3 × 3 × 3, we call 2 or 3 as ‘block

size’, 2 × 2 × 2 or 3 × 3 × 3 as ‘block’. These ‘block’ differ

from previous block. If the block size equals to 1, the first graph

cut find real cross points, that is, this means exact minimization.

Using level 1 approximation, the same processing time of 14ms

was achieved for both block sizes of 2 and 3 at GTX1080 GPU

(Table 2). Corresponding the result disparity images are Figure 8

and Figure 9, respectively.

We have developed further approximation i.e. level 2 approx-

imation. In it, the push relabel loop cuts each block separately,

while the wave front fetch loop deals with the thin skin 3D area

as same as in level 1. This approximation dramatically reduces

the processing time. It takes only 5ms at GTX1080 GPU, 19ms at

GTX660 GPU (Table 2). Corresponding the result disparity image

is Figure 10. The wave front fetch algorithm is very strong in the

early stage where a lots of overflows exist in the graph, but very

poor for overflows to run out. Therefore this combination leads to

a good result.
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Figure 5. We seek continuous surface.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0  10  20  30  40  50  60  70  80  90 100

e
r
r
o
r

penalty

inhibit=1023
inhibit=0

Figure 6. Relation between the penalty constant and the error

(Equation 2) at the inhibit constant equals 0 and 1023.

Method error % corei7 gtx1080 gtx660

BK 11578 92 3823ms — —

l=1 b=1 11578 92 — 122ms 472ms

l=1 b=2 14624 91 — 14ms 83ms

l=1 b=3 20657 88 — 14ms 86ms

l=2 b=3 21294 88 — 5ms 19ms

Table 2. Comparison of the errors (Equation 2) and execution

times on Tsukuba. b=1 means exact minimization, l=2 indicates

level 2 approximation. % indicates the sites percentage of corre-

sponding to ground truth.

Figure 7. block size=1, exact minimization

5. Conclusion

The new sites labeling formulation for stereo has been pre-

sented. We treat left and right image symmetrically and introduce

a novel concept of gaze lines, which are auxiliary lines defined on

the cross points of rays corresponding to left and right image pix-

els. In our formulations, sites are gaze lines and labels are depth

numbers. For this symmetrical formulation, visibility reasoning

is naturally included in the energy function, and a small smooth-

ness term does not damage the 3D results much. This makes the

minimization step so simple that we could develop an approxima-

tion method for graph cut itself which dramatically reduces the

processing time. And now we are noticed that this symmetrical

minimization could perform stereo rectification for the two cam-

eras without any calibration objects like chess boards [19].
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Figure 8. block size=2, level 1 approximation
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