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Abstract. This paper describes the design and evaluation of the PCA
(Plastic Cell Architecture) cell, which implements a novel space alloca-
tion method. PCA is a dynamically reconfigurable architecture which
exceeds the FPGA (Field Programmable Gate Array) in flexibility and
generality. Circuit dynamically reconfiguration is achieved as adminis-
trators manage the heap areas. But, because objects operate and require
new space in parallel, it is difficult to manage them collectively. So, we
introduced the concept of pressure, which enables space allocation. As
a simulation result, we found that this new method, which relies on
pressure commands, could solve the problems of object management ef-
ficiently. We designed the PCA cell with space allocation capability. Con-
sequently, the number of gates per PCA cell is 200, and the maximum
delay time per cell is 3.55 ns. Moreover, the 3 × 3 PCA cell processing
of six space-allocation commands consumes 306.3µW.

1 Introduction

Real operations of functions are performed by hardware. To perform arbitrary
function, the hardware itself must have a variable part. However, if the hardware
is composed of only variable parts, it cannot be configured or given any logic.
Therefore, hardware is composed of dual components – a variable part and a
fixed part.

Based on this consideration, we conducted a study on a novel architecture
called PCA (Plastic Cell Architecture), which is different from conventional com-
puters in its realization of the double dual-structure. In the structure of the PCA,
SRAM-type FPGAs (Field Programmable Gate Arrays) are scattered over fine-
grain networks spanning all of the chip. By making the best use of this structure,
it can directly perform computing, e.g., memory storage, processing and infor-
mation transfer in parallel. In addition, the structure and scale of the configured
circuits can be adapted to the behavior of applications by transferring the con-
figuration information of the FPGAs. A unit of configuration of circuits is called



an object in the PCA. Circuits are configured separately for each object and are
added into the system on-the-fly. The objects in the system that become unused
are stopped and detached. To make adding and removing objects on-the-fly easy,
PCA has taken the approach of using asynchronous circuits, which have been
widely recognized as a means of designing low power consumption circuits and
alleviating the performance degradation caused by its global clock skew.

The most difficult problem has been space allocation in the PCA. Because
objects move in parallel, it is hard to manage them collectively. Thus, the pres-
sure command was proposed as a new space allocation method to solve the
abovementioned problem. First, we created a simulator to evaluate the pressure
concept, and then we developed three pressure command sets. Next, we decided
to implement one command set and evaluate its performance. This evaluation is
presented here.

The composition of this paper is as follows. In Section 2, a description of
PCAs along with related work is presented as the background of this study. In
Section 3, details of the mechanism of the pressure command are described. In
Section 4, the pressure commands that we designed are described. In Section 5,
the evaluation is described. The paper ends with a short summary in Section 6.

2 Background

2.1 Plastic Cell Architecture
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Fig. 1. Plastic Cell Architecture
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Fig. 2. Structure of plastic part

PCA (Plastic Cell Architecture) [1]–[3] is a dynamically reconfigurable ar-
chitecture enhanced by the flexibility and the generality of the FPGA. PCA-1,



developed by NTT (Nippon Telegraph and Telephone Corporation), was the
first LSI to realize this concept. This LSI is an array of PCA cells, each of which
is composed of a plastic part and a built-in part (Fig. 1). The PCA cells are
expected to realize the high integration of the LSI because of its homogeneous
structure. Each PCA cell is connected with the adjoining cells in four directions.
The plastic part works as both reconfigurable logic and local memory.

When it operates as a circuit, a circuit of arbitrary size is composed by
connecting the plastic parts. When it operates as memory, the plastic part in the
PCA cell is used with the unit. On the other hand, the built-in part connects the
circuit and the memory in the plastic part and performs the data communication.
The plastic part is composed of 8× 8 two-dimensional basic cell mesh (Fig. 2).
The basic cell is connected to four adjoining basic cells with 1-bit input and 1-bit
output. Moreover, it has a 64-bit memory unit because it is composed of four
16-bit LUTs (look-up tables). This structure of the plastic cell that is composed
of LUTs is called the Sea of LUTs.

The bit-serial PCA is an advanced PCA that adopts the asynchronous cir-
cuit system to a bit-serial data path. Asynchronous designs are clockless, so
clock skews are avoided and an object can be designed with completely inde-
pendent timing constraints. PCA operates by objects and messages, and the
circuit structure based on local handshaking is also suited for miniaturization
because it dispenses with long lines. A processing function is realized by state
machines and shift registers in Bit Serial PCA. This coarse-grained composition
can acquire efficiency higher than the Sea of LUTs.

2.2 Related Work

PCA-2 is being developed by NTT [4]. PCA-1 uses a 0.35−µm process, but
PCA-2 uses a 0.14−µm process. The number of basic cells of the plastic parts
are enhanced to 256, so the number of LUTs in a PCA cell are 1024. The
width of the passing of data between built-in parts is enhanced to 9 bits. And
the circuit composition for throughputs, such as making the detailed pipelines
between modules, is changed. With such improvements, the performance has
become better in the degree of integration and operation speed. PCA-Chip2, an
experimental device of the PCA that uses a synchronous circuit, was developed
at Kyoto University. The granularity that minimizes the amount of resources for
logical synthesis was found by the method of synthesizing the benchmark circuit
of MCNC to the various granularities [5]–[7].

The DRP (Dynamically Reconfigurable Processor) of NEC Electronics Corp.
is a coarse-grained multi-context device [8]. The prototype chip DRP-1 was
developed as the first LSI to use DRP architecture. DRP-1 has DRP cores,
memory controllers, PCI controllers, and multipliers. The processing element
(PE) of the DRP that is the reconfigurable element is the 8-bit arithmetic and
logic unit/data management unit (ALU/DMU). The Digital Application Pro-
cessor with Distributed Network Architecture (DAP/DNA), which IPFlex an-
nounced in 2002 [9], consists of parallel execution engine DNA matrices which
are mounted for the exclusive use of the 32-bit RISC and 144 data processing



elements. The DAP RISC core controls the processor’s dynamic reconfiguration,
while portions of an application that require high-speed data processing are han-
dled by the PE Matrix, which provides flexible parallel and pipelined operation.
A DNA configuration memory consists of four banks. The Xpp of PACT XPP
Technologies, Inc [10] consists of 128 32-bit processing array elements (PAEs).
The PAEs and corresponding I/Os are segmented into two processing array
cluster (PAC) blocks. A supervising confirmation manager (SCM) governs the
configuration handling to local configuration managers, which further provide
the necessary connectivity and processing for an algorithm.

3 Pressure Command

3.1 Space Allocation

The domain administrator of a conventional PCA manages space allocation. It
receives the demand of a new domain from some objects, and pays out some new
domains. But it has the following problems.

–An administrator has to always know all objects and vacant areas, because
these consume unnecessary electric power. This ruins the advantage of an asyn-
chronous circuit.

–It is a bottleneck of processing that a lot of requests concentrate on the
administrator. This disrupts the essential parallel processing of the PCA.

–The method of reducing overhead by dividing the administrator has been
proposed, but this method is thought to cause various problems because com-
munication between the administrators is difficult.
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Fig. 3. Pressure command



To solve the abovementioned problem, the proliferation protocol with the
pressure command was proposed as a new method of space allocation. The con-
cept is shown in Fig. 3. The communication among modules is performed through
the built-in parts. Space allocation is also performed through the built-in parts
with the proliferation protocol. If the module A needs the new module A’, it
sends the pressure command to the surrounding modules, as shown in Fig. 3 (a).
Then, the pressure command spreads to each module. The surrounding modules
which accepted this command move to a vacant place. In Fig. 3 (b), the module
B moved and the module A’ is made in the vacated space. In this method, space
allocation can be performed without an administrator.

3.2 Basic Proliferation Protocol

Although some methods of realizing this proliferation protocol are considered,
the following is considered the basic protocol. In order to simplify problems, we
decided that routing lines between objects are not considered and an object con-
sists of one module (= one PCA cell). The basic proliferation protocol operates
with five states and eight Pressure commands. The state of “EMPTY” means a
module is not a meaningful module. The state of “ISMOD” means a meaningful
module. The “DTSRC” module sends its modular data. The “TARGET” is a
proliferation module. This module needs a new domain. The “DTDST” module
receives modular data.

Each state of a module reacts reasonably to the received command, as shown
in Fig. 4. If a module receives a command (input-cmd), the module sends a
command in some directions. ST means straight. RETURN means the mod-
ule sends a command to itself. A module may send out two or more commands
(shaded areas). And then, its state changes to next-state. The term lock has
three conditions. unlock means that the module can receive commands from all
directions. BACK means that the module can receive from only the one direc-
tion which received the command immediately before. Also, lock conditions may
remain. How these commands are used is explained in the following section.

3.3 Example of Proliferation Protocol

As an example, the situation that displays the module (from module-1 to module-
25) in the state ’ISMOD’ to the procession of 5x5 is shown in Fig. 5. The pro-
cession outside closes with the module of state ’EMPTY’.

To attempt module-13’s module cloning, the command START is given.
When a module accepts the command START, the module’s state changes to
’TARGET’ and sends itself the command INCRZ, as in Fig. 5 (a). Sending the
command INCRZ is continued until the proliferation operation is finished. If a
module accepts this INCRZ command, it sends the pressure command to neigh-
bor modules (Fig. 5 (b)). The module which receives the command PRESS2 ( )
sends out the same command in the same direction. However, in addition to the
same direction, the module which received the command PRESS1 ( ) sends
out a command PRESS2 to the right. The pressure spreads by transmitting this
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Fig. 4. State machine table

operation through the modules. When the module of state ’EMPTY’ receives
the pressure, this module sends out the command ISEMPTY in the opposite
direction (Fig. 5 (c)) and its state changes to ’DTDST’. This means it has be-
come the destination of modular data. The module which receives command
the ISEMPTY changes its state to ’DTSRC’ in order to move data to itself.
At this time, that module ignores any pressure commands. The module of state
’DTSRC’ sends out the MAKE command to an empty module, and passes the
modular data. The module which receives the data with the command MAKE
returns the command ERASE. Then, the original module changes to the state
’EMPTY’, and is not a module. It is shown in Fig. 5 (d). As a result of the
repetition of the movement of such a module, the module of state ’EMPTY’ is
made near to the module of state ’TARGET’. Even if several empty modules
are in the neighborhood (Fig. 5 (e)), the ’TARGET’ module chooses only one
module as a candidate for a copy. Finally, the module of the target makes its
own clone in an empty module (Fig. 5 (f)).

In this simple protocol, pressure acts on the meaningful modules and gravi-
tation acts on the module which is not a module.

4 Design of PCA cell

This section describes the detailed inside specification and operation of the de-
signed PCA cell which implements the pressure command.
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Fig. 5. Proliferation Protocol

4.1 Outline

We designed the PCA cell which implements the pressure command to evaluate
the performance. Because this design focused on the justification and perfor-
mance of the pressure command, the synchronous circuit system is adopted for
design simplification.

4.2 Tools

SFL (Structured Function description Language), which is HDL (Hardware De-
scription Language) developed at the NTT Research Institute for the logic com-
position tool PARTHENON (Parallel Architecture Refiner Theorized by NTT
Original Concept), was used as HDL. SFL can make descriptions more elegantly
than other languages can because it extracts the candidate for description to
a single-layer synchronous circuit. 2SECONDS and PARTHENON were used
as the simulator and logic composition tool for SFL, respectively. SFL2Verilog,
which is one of the functions of PARTHENON, was used as a tool to change SFL
into Verilog. and Design Compiler by Synopsis was used as the logic composition
tool for Verilog.

4.3 Specification of PCA cell

The PCA cell is shown in Fig. 6. The concrete functions of each part are described
in the following.

–Input and output
Because the number of pressure commands is eight, as mentioned in the

previous section, the input and the output need only 3 bits to express them.
Moreover, there is a 3-bit register for memorizing the input command at the
input ports.



–”lock” and ”looked”
Because one State Machine can receive only one command at once, there are

two 4-bit registers called lock and looked inside. These are used to control the
commands.

lock is used to carry out the command processing exclusively. Each bit cor-
responds as follows. Namely, bit 1 (MSB) is south, bit 2 is west, bit 3 is east
and bit 4 is north. Data processing can be performed where the bit is 1. (e.g.,
If the value of lock is 0b1000, it means that the state machine receives only the
command from the north.) The initial value of lock is 0b1111.

looked is used in order to memorize the direction of a command entering and
going out. Each bit corresponds as in lock. If the corresponding value is 1 when
a command enters, it shows that the command enters from that direction. If the
corresponding value is 1 when a command goes out, it shows that the command
goes out to that direction. (e.g., If the value of looked is 0b0010 when a command
enters, it means that the command enters from the west.) The initial value of
looked is 0b0000.

–Judgment Part
Input commands are sent to the portion called the Judgment Part. Here, the

flag and lock of each direction investigate the commands before they enter the
Judgment Part. If these bits are 1, the command from that direction can enter the
State Machine. Moreover, as soon as the command goes into the State Machine,
the bit of looked corresponding to the direction containing the command is set
to 1, and the direction where the command was input is stored. If the following
command doesn’t enter from the direction that the command enters, the flag in
that direction is adjusted to 0.

–State Machine
The State Machine receives input commands and determines the next com-

mand output and its direction. It can receive only one command at once. The
State Machine has five states, and its processing is different from the command
and the state described in the previous section.

5 Evaluation

We evaluated following items.

– Number of gates and maximum delay time of one PCA cell.
– Power consumption in an asynchronous circuit system of a 3 × 3 PCA cell

(Fig. 7) processing six ”START” commands.

We had to measure two power consumptions of the 3× 3 PCA cell, i.e., pro-
cessing six ”START” commands and processing no commands, to determine the
power consumption in the asynchronous circuit system. The power consumption
of the 3× 3 PCA cell processing six ”START” commands consists of the power
to process the actual commands and the power to make a clock signal. And
the power consumption of the 3× 3 PCA cell processing no commands contains
only the power to make a clock signal. Therefore, the result, which subtracts
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pressure command

Fig. 7. 3× 3 PCA cell

the latter from former, is the power consumption of the 3 × 3 PCA cell in an
asynchronous circuit system which has no clock signals.

Number of gates of one PCA cell 200

Maximum delay time of one PCA cell 3.55 ns

Table 1. Evaluation of one PCA cell

The number of gates and the maximum delay time of one PCA cell is shown
in Table 1. Since the number of gates of the built-in part in PCA-1 is about 2500,
the ratio of the space allocation part is about 7%. The maximum delay time of
the space allocation is lightly affected because its value is 25 ns in PCA-1.

Power consumption of 3× 3 PCA cell processing 6 commands 16.0182 mW

Power consumption of 3× 3 PCA cell processing no commands 15.7119 mW

Power consumption of 3×3 PCA cell in an asynchronous circuit 0.3063 mW (306.3 µW)

Table 2. Evaluation of 3× 3 PCA cell

The power consumption of the 3 × 3 PCA cell processing the six ”START”
commands and processing nothing are shown Table 2. From these results, we
could find the power consumption of the 3 × 3 PCA cell in an asynchronous
circuit system. So, the power consumption of the 3× 3 PCA cell per processing
command is 51.0 µW.



6 Conclusion

This paper introduced command sets for the PCA. These command sets, based
on the concept of pressure, were invented in order to realize a new space alloca-
tion method. After that, we implemented one command set in the PCA cell, and
confirmed that it operated according to the protocol. The results of evaluating
the performance of one PCA cell showed that the number of gates was 200, and
the maximum delay time was 3.55 ns. Furthermore, the power consumption of
the 3× 3 PCA cell processing six commands in an asynchronous circuit system
was 306.3 µW. Therefore, we found that the power consumption of the 3×3 PCA
cell per processing command was 51.0µW. The ratio of the number of PCA cell
gates (200) to the number of PCA gates of the built-in part (2500) showed that
the space allocation part was only 7%. This fact indicates that it is possible to
implement the space allocation part in the built-in part without large overhead.
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