

Abstract-- Linked Open Data (LOD) is one of the methods that

enables publishing and sharing of data on the Web, and makes

data available for many applications. Maintaining the volume and

quality of data in LOD requires to keep on engaging people in

inputting data. One of the solutions is motivating data producers

to input data by giving incentives. However, LOD does not track

how data has been used by which applications. In order to track

records, data of LOD need to be instantiated to represent who

produced it and which applications used it. This paper proposes

resource representation by hash value in order to realize

instantiation of triple data efficiently according to the concept of

RDF which uniquely express instance by URI. This paper also

proposes data processing by utilizing the standard SPARQL

query to instantiate triple data and feed back usage records to

data producers. This paper contributes to showing feasibility of

feedback model by building data platform and developing an

application enabling people to entry information about spots in

town, and by conducting a workshop with people living in

Nagasaki city.

I. INTRODUCTION

Linked Open Data (LOD)[1] is one of the methods that

enables publishing and sharing of data on the Web. In LOD,

data is structured by RDF (Resource Description

Framework)[2] and can be described in a format that software

can process, hence it is a framework to describe metadata of

resources on the Web. By describing the structure and

relationship of data on the Web with RDF, it becomes data that

many applications can use, which leads to more advanced use

of data. Since the Japanese government has been stated to

tackle the promotion of opening data owned by local public

municipalities. Conversion various data to the open data is

actively addressed not only by the administration but also by

private companies and citizens. However, motivation for

continuous data entry has become an issue. the issue of "the

effect, merit, needs of open data is unclear" is highly

recognized. That is because LOD does not know how the

generated data was used(Fig.1).

In order to encourage people to input data, the

crowdsourcing framework is modeled to provides rewards or

incentives for participants in return just for work. Data input

work in LOD can be furthermore associated with results used

from external applications. In this research, we propose a data

model and data processing method that can feed back the

utilization status of data to the person who input that data. The

utilization status represents how many times data is viewed or

what applications use data and so on. In order to feedback

usage records to producers, it should be identified who

generated which data.

Fig1. Divided aspects of data generation and usage

The scope of this research is expressed in Fig. 2. There are

2 key elements of this scope, one is data model to instantiate

each triple data and the other is data processing to make this

idea easy to use.

Fig2. The scope of this research

We also developed a Web application and conducted a

workshop to enter information of spots in town. This paper

concretely shows not only the data structure but also the data

processing method to use the data structure. In addition,

through the results obtained by the workshop, this research

shows the usefulness of the data model.

In this paper, we refers the related research in Chapter 2,

and the data structure and data processing are proposed in

Chapters 3 and 4. We introduce the platform and Web

application in Chapter 5. Then we discuss and conclude in

Chapter 6, and Chapter 7.

II. RELATED STUDY

Studies suggesting how it is important to give incentives or

rewards to data entry person in order to maintain the volume

and quality of data has been done[3] [4] [5]. In addition,

ownership of each data is fundamental to engage them[6].

 Construction of Linked Data Platform Implementing Feedback

Data Model of Usage Records

Makoto Urakawa, Kenichi Arai, Toru Kobayashi

Nagasaki university, Nagasaki, Japan
bb52218201@ms.nagasaki-u.ac.jp

2019 IEEE International Conference on Consumer Electronics
(ICCE)

978-1-5386-7910-4/19/$31.00 ©2019 IEEE

Meanwhile, as a technical study on the data model, several

techniques to instantiate triple data has been studied. There are

standardized RDF Statement [7], Singleton Properties [8] to

identify predicates, Named Graphs [9] which defines multiple

triplets at once. RDF Statement creates a new instance and

creates a relationship using a specific vocabulary for subjects,

predicates, and objects that constitute the triple data. Therefore,

the triple number is tripled. Singleton Properties is a method of

expressing the predicate of triple data to be instantiated by

another ID and using the ID as an instance. In this case,

although the required triple number can be suppressed to be

doubled, it is necessary to change the predicate which is the

important relationship between the subject and the object of

the original triple data. Since Named Graphs are devised to

group multiple triples, processing to specify the graph is

necessary. Singleton Properties is most expressive [10], but

original data should be changed, and Named Graphs aims to

group multiple triples. Therefore, the data model proposed by

this paper is evaluated by comparing it with RDF Statement

whose purpose and method are similar.

III. DATA GENERATION PROCESSING

In order to feedback usage records to producers, it should be

identified who generated which data, it is necessary to

instantiate triple data itself. Fig. 3 shows that triple data about

<"latitude (predicate)" of "coin locker (subject)" is "32.74472

(object)"> is expressed as an instance. In this example,

information about creator and creating date are also expressed.

coin locker 32.74472
latitude

Citizen A

registration

instance X

registration date

20180801

Fig3. Instantiation image of triple data

In this paper, we propose resource representation by hash

value in order to realize instantiation of triple data efficiently

according to the concept of RDF which uniquely express

instance by URI. By concatenating the values obtained by

hashing the predicate and the object to the value of subject, it

is possible to efficiently maintain uniqueness of the generated

instance since the original subject is originally expressed in

URI. Fig. 4 shows an example in which Fig. 3 is represented

by the data structure proposed by this paper.

http://domain name/coin locker+HashFunction（“latitude”＋“32.74472”）

※ It is defined independently of the following triple data

Citizen A

registration

coin locker 32.74472
latitude

Fig4. Proposed instantiation model

As shown in Fig. 4, instantiation is possible without directly

affecting the triple data originally generated. Therefore, it is

unnecessary to directly provide original triple data with

feedback data received from the external application.

A. Modeling instantiation processing

A generalized model of the data structure shown in Fig. 4 is

shown in Fig. 5. "S", "P", "O" in Fig 5 are values expressing

the subject, predicate, object of triple data, and "X" and "Y"

are parameters of the subject and predicate that you want to

add to triple data.

X
Y

S O
P

Fig. 5. Data Model for instantiation

 Data model for instantiation can be described in the

standard SPARQL query shown in Fig. 6. The reason is why

calculating hash value is defined in SPARQL.
INSERT
{

?s ?p ?o.
?user ?produce ?spo.

}
WHERE
{

BIND(URI(S) as ?s).

BIND(URI(P) as ?p).

BIND(STR(O) as ?o_original).

BIND(IF(contains(?o_original,"http"), URI(?o_original),STR(?o_original)) AS ?o)

BIND(CONCAT(STR(?p),STR(?o)) as ?po).
BIND(URI(CONCAT(STR(?s),SHA1(?po))) as ?spo).

BIND(URI(X) as ?user).

BIND(URI(Y) as ?produce).

}

Fig6. SPARQL query for instantiation

IV. DATA FEED BACK PROCESSING

As shown in Chapter 3, since triple data is instantiated, it

becomes possible to add information such as registrant

information and registration date to each triple data. In this

chapter, the data processing for feedbacking usage records

such as the number of times of use from the external

application will be described in detail.

It is necessary for data producers to manage not only usage

records such as the number of times of being displayed or

clicked but also information about the application feedbacking

them. In addition, it is necessary for each application to

flexibly set the information about feedback such as “viewing

count” or “clicking count” and so on. Therefore, this paper

proposes the data structure which enables differentiate the

relationship between triple data and application, and which

also make it easy for the application to set usage records by

defining it flexibly (Fig. 7).

 In this figure, "Relation instance 1" is an instance for

uniquely associating “APP01” with the instantiated triple data.

Each application can flexibly set the number of times

displayed by the application in "Relation Instance". In Fig. 7,

"ngsk: relation instance 1 - view count - 13" represents

feedback data. As the number of click (click count) in “APP

02” is 142, feedback data can be flexibly defined by each

application. “ngsk: APP 01” and “ngsk: APP 02” in the figure

are instances for identifying the application.

ngsk:USER_A

ngsk:produce

ngsk:APP01

Relation
Instance1

ngsk:feedback

ngsk:app
viewcount

Relation
Instance2

ngsk:APP02

ngsk:app

ngsk:feedback

Root part of the data structure that forms the basis
for feedback for each application

13

clickcount

142

Instantiated triple
（ngsk:SPOT_001＋Hash

Value）

Fig. 7. A data model that enables feedback

A. Modeling feedback processing

A generalized model of the data structure shown in Fig. 7 is

shown in Fig. 8. "SPO" represents instantiated triple data, and

"APP" is identified application, "F" is a parameter for each

application to set.

SPO SPO+APP

ngsk:feedback

APP

ngsk:app

xsd:integer
F

Fig. 8. Data Model for Feed Back

When external applications add their usage records to this

data model, they must set the parameters “SPO”, “APP” and

“P”. This must be done after accessing LOD data sets, hence

they can comprehend a value of “SPO” in advance. “APP” is

a parameter to identify themselves and “F” can be determined

by themselves. Fig. 9 shows a SPARQL query to update an

usage record according to the data mode written in Fig. 8.

DELETE {?s <F> ?count.}

INSERT{?s <F> ?countUP. }

WHERE{

< SPO > ngsk:feedback ?s.

?s ngsk:app < APP >.

?s <F> ?count.

BIND(xsd:integer(?count)+1 as ?countUP).
}

Fig. 9. SPARQL query Model for Feed Back

Fig. 10 shows the way of feedback usage records to data

producers through the data model. This figure combines the

data model for instantiation shown in Fig.5 and the data model

for feedback shown in Fig.8.

X
Y

S O
P

SPO SPO+APP

ngsk:feedback

APP

ngsk:app

xsd:integer
F

“Linking by calculating
hash value”

“Feedback usage records to producer X”

Fig. 10. Feedback on the data model

V. LOD PLATFORM

In this section, we introduce the LOD platform constructed

to demonstrate that the above data model and generalized

query model can be actually implemented in a system. As an

application that uses this platform, we developed 2

applications that can register city information related to

sightseeing and can refer these city information and add

feedback to them.

A. System Architecture

From both the security viewpoint and the efficient

development, the data processing function and the data storage

function are implemented as an API(Fig. 11). The data

processing function is configured separately for the data

registration application and the data use application. This

means that the query statements shown in Fig. 6 and Fig. 9 are

installed separately.

API Server
（node.js）

RDF Store
（fuseki）

For data
registration

For data
reference

REST API
（SPARQL）

REST API
（SPARQL）

LOD reference
application

（Web browser）

LOD registration
application

（Web browser）

REST API
（spot name、location、picture etc）

REST API
（feed back etc）

＠AWS
Fig. 11. System Architecture

In the API for data registration, it accepts the spot name,

latitude / longitude information and camera image as

arguments from the Web application by POST command. At

that time, the client application transmits the parameter shown

in Fig. 5 as an argument to the API server. On the API server,

the SPARQL statement in Fig. 6 is generated and sent to the

RDF store in the subsequent stage. Similarly, the data

reference API accepts the parameter of Fig. 8 as an argument

by the POST command, generates a SPARQL statement, and

transmits it to the RDF store.

B. Prototype of data generation client

In this section, we introduce the web application using the

above data registration API. Fig.12 shows a screen for

registering spot information, enabling camera start-up,

acquisition of GPS data, etc. from the web browser. The input

data can be registered in the RDF store via the registration API.

In the data generation client application shown in Fig. 12,

there is also a screen for confirming feedback data from the

data reference application, which are described in this section

D.

Spot name

Genre

Mapping the
GPS data of
the device

Comment

Fig. 12. The screenshot of the registration application

C. Prototype of data reference application

As Fig. 13 shows, we also developed a data reference

application in order to verify whether feedback about usage

records from external application can directly feed triple data.

As described above, they can flexibly put feedback data into

triple data they accessed. Users of this application can press

"Like" and comment on all the spot data. By using the query

shown in Fig. 9, the number of pressed "Like" and comments

can be registered as feedback data in the RDF store via the

data reference API of Fig. 11.

“LIKE” button

“COMMENT” button

They can comment
on each spot data.

Fig. 13. Example of feedback in reference application

D. Confirm data feedback in data registration application

Fig. 14 shows a confirmation screen of spot data registered

by a certain entry person in the data registration application. If

there is feedback from the external application, you can check

its contents. As shown in Fig. 14, you can comprehend the

remarks and the number of "Like" pressed in the reference

application of Fig. 13.

Before getting feedbacks After getting feedbacks

It shows 4 likes and the
remark from APP01

Fig. 14. Registered spot information confirmation screen

VI. EVALUATION

Using a Web application developed based on the proposed

data structure, we held a workshop to have Nagasaki citizens

enter city information. In this section, we evaluate the

usefulness of feedback data model in LOD from the result of

workshop.

A. Workshop

Under the cooperation of the Nagasaki Urban Landscape

Research Institute2 , we held a workshop on Nagasaki city on

May 27, entering information on streets (parks, toilets, rest

house, etc.) while walking around the city. Participants were 7

people living in Nagasaki city, they took 2 hours. As a result,

49 spot data were registered, and the spot list is shown in

Fig.15.

Fig. 15. Registered spot list

 We got a comment that access from a web browser made

it easy and smooth to register information. In addition, They

said that they got a feeling of accomplishment that they can

contribute to city planning by receiving feedback. Not only

their process but also results or feedbacks from end users

encourage them to input data about the town. On the other

hand, for example, there was also a problem that different

people registered duplicates in the same spot. This problem

suggests the need to clarify who and when entered each spot

2 http://null-project.net/

data, and instantiate it without duplication.

B. Usefulness of data model

From the viewpoint of the data model, we evaluate whether

it can guarantee who entered when. As shown in Fig. 16, the

proposed data model can represent an instance uniquely. In the

case of RDF Statement, multiple instantiations (instance X and

instance Y in the figure) are possible for the same triple.

Therefore, instantiated data can be more easily managed by the

data model that this paper proposes. However, multiple

participants (Citizen A and B in the figure) can generate triple

data representing the fact that they produced in both data

models. It has to be limited by applications which use these

data models.

Fig. 16. Duplicate expression in Statement

In the case of rdf:Statement, when instantiating one triple

data, one instance and three triples are required. In the

proposed data model, since it can be expressed with only one

instance, it can be briefly generalized to a query. Furthermore,

through application development, we also found that the

proposed data model was useful in terms of data management.

The reason is that the subject URI of the original triple is

adopted and expanded as it is, so that it is structured to make it

easier for operators and developers to understand. Also, since

it is unnecessary to directly connect with the original triple

data to be instantiated, it can be designed as a different

database, so it does not affect each other.

VII. CONLUSION

In this paper, in order to realize continuous data generation

in LOD, The authors focus on adding the usage records to

triple data and feedbacking them to the person who produce

the triple data in LOD. In addition, the authors propose the

data model and processing in API to achieve LOD platform

where records of use can be feedbacked. Furthermore, in order

to verify the usefulness of the data model, the authors actually

conducted the data entry workshop at Nagasaki city using

applications developed for registration and reference. Through

the workshop, it was confirmed that the importance of

feedback to data producers and the proposed data model are

useful.

This paper contributes to showing feasibility of feedback

model by verifying the data processing and building data

platform and its applications, and conducting the workshop. In

the future, we continue to input data by citizens leading to city

planning in Nagasaki city, and consider opening API and data

store. In this research, we focused on town information on

sightseeing, but it is possible to develop widely such as

disaster prevention and crime prevention. It is also applicable

not only to Nagasaki but also to other cities.

REFERENCE

[1] “Linked Data - Design Issues “.

https://www.w3.org/DesignIssues/LinkedData.html.

[2] “RDF 1.1 Semantics“. https://www.w3.org/TR/rdf11-mt/.

[3] KARAM Roula, MELCHIORI Michele, “Improving geo-spatial linked

data with the wisdom of the crowds,” In: Proceedings of the joint

EDBT/ICDT 2013 workshops. ACM, 2013. p. 68-74.

[4] TAHARA Yasuyuki, OHSUGA Akihiko, “User Participatory

Construction of Open Hazard Data for Preventing Bicycle Accidents,”

In: Semantic Technology: 7th Joint International Conference, JIST 2017,

Proceedings. Springer, 2017. p. 289.

[5] Arakawa Yutaka,Yuki Matsuda, “Gamification mechanism for

enhancing a participatory urban sensing,” Survey and practical results.

Journal of Information Processing, 24(1), 31-38,2016.

[6] SINGH Priyanka, SHADBOLT Nigel, “Linked data in crowdsourcing

purposive social network,” In: Proceedings of the 22nd International

Conference on World Wide Web. ACM, 2013. p. 913-918.

[7] “RDF Schema 1.1 Statement“. https://www.w3.org/TR/rdf-

schema/#ch_statement.

[8] Nguyen Vinh, Olivier Bodenreider, Amit Sheth, "Don't like RDF

reification?: making statements about statements using singleton

property," Proceedings of the 23rd international conference on World

wide web. ACM, 2014.

[9] Carroll Jeremy J, Bizer Christian. Hayes Pat, Stickler Patrick, “Named

graphs,” Web Semantics: Science, Services and Agents on the World

Wide Web, 3(4), 247-267, 2005.

[10] Hernández Daniel, Aidan Hogan, Markus Krötzsch. “Reifying RDF:

What works well with wikidata?.” SSWS@ ISWC, 1457, 32-47, 2015.

[11] “RDF 1.1 Query Language“.https://www.w3.org/TR/sparql11-query/.

